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Abstract

Here, 140 pigmented rice genotypes from the North Western Himalayas were evaluated with the objective of addressing the concerns of
nutritional insecurity faced by the population having rice as a staple food. Using an augmented block design, we assessed morphological
traits alongside biochemical traits like total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. The principal
component analysis identified genotypes SR-2 and NBPGR-16 as promising for plant height and panicle length, while GS-608 excelled
in grain yield and antioxidant activity. High TPC and TFC were found in Black Rice, SKUA-533-1, and ZAG-V4, with GS-596 and Chanab
showing strong antioxidant activity. Furthermore, the results revealed substantial variability, indicating the potential for targeted
breeding to enhance yield and nutritional quality. This study highlights promising pigmented genotypes with superior agronomic
performance and health-promoting properties, providing a foundation for breeding programs aimed at improving food security and

public health through biofortified rice.

Keywords: Pigmented rice, Genetic Variability, Flavonoids, Phenols, Antioxidants.

Introduction

Rice (Oryzasativa L)) isindispensable for global food security,
serving as a staple food for over half the world’s population,
particularly in Asia, Africa, and Latin America. With an
estimated global population increase to 9.7 billion by 2050
and amid evolving climate challenges, enhancing rice yield
and quality has become a critical priority. Although rice
breeders have made strides in yield improvement, progress
is constrained by limited genetic diversity within cultivated
rice (Xing et al., 2010). To bridge this knowledge gap, it is
essential to explore untapped genetic variability in diverse
rice germplasm (Devi et al., 2017).

Beyond yield, the nutritional quality of rice is gaining
importance. White rice contains significantly fewer
bioactive compounds compared to pigmented rice varieties
(Unpublished data). Black rice exhibits the highest levels of
flavonoids, followed by red rice, while white rice has the
lowest content. Additionally, the antioxidant capacity of red
and blackrice is notably high, primarily due to the presence
of catechin in red rice and quercetin in black rice (Chen et

al., 2022). These compounds have been traditionally valued
for therapeutic purposes. This study advances prior research
by providing a comprehensive analysis of 140 diverse
rice genotypes, both pigmented and non-pigmented,
from Kashmir Valley and Northeast India. While previous
studies, such as those by Kaur et al. (2018), addressed limited
genotypic diversity of North Western Himalayas, especially
Kashmir valley, our work encompasses a broader genetic
spectrum, including landraces, pigmented, aromatic, and
some released varieties from the North-Western Himalayas.
This expanded genetic framework highlights the untapped
potential of pigmented rice for biofortification and lays a
foundation for identifying key quantitative trait loci (QTLs).
These findings will guide the development of targeted
breeding strategies, such as crossing high-yielding varieties
with nutritionally superior pigmented genotypes, to bridge
existing gaps in nutritional quality and yield stability across
diverse agro-climatic zones.

This study was conducted over two consecutive kharif
seasons, from 15" June to 8" October 2022 and from 7t
June to 15" October 2023, at the experimental field of
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MRCFC Khudwani, SKUAST-Kashmir, India. A total of 144
pigmented rice genotypes, including four checks from
Kashmir Valley and Northeast India, were evaluated. The
genotypes were planted in an augmented block design
with seven blocks and four check varieties, following
recommended agronomic practices with 20 x 10 cm spacing.
Five plants were randomly selected and tagged from each
line of individual genotypes for observations at different
growth stages. Traits measured included grain yield, 1000
seed weight, spikelets per panicle, number of tillers, plant
height (cm), panicle length (cm), days to 50% flowering,
phenols, flavonoids and antioxidant content. Data analysis
was done using ANOVA in the R package ‘augmented RCBD’
to assess variability, heritability, and genetic parameters.
Further, trait variability was evaluated through range, mean,
and coefficient of variation, with correlations and principal
component analysis employed to explore trait associations.
For biochemical parameters, total phenolic content (TPC)
and total flavonoid content (TFC) estimation were carried out
using the method proposed by Shen et al. (2008) with slight
modifications. DPPH method (2, 2-diphenyl-1-picrylhydrazyl)

was used for antioxidant activity estimation (Oki et al., 2005).
Further, the population structure analysis was done using
the Bayesian clustering method in STRUCTURE version 2.3.4
(Pritchard et al. 2000) by analysis of SSR-based marker data.
The length of the burn-in period and Markov Chain Monte
Carlo (MCMC) were set at 100,000 iterations (Evanno et al.
2005). To obtain an accurate estimation of the number of
populations, three runs were performed for each K-value,
ranging from 1 to 10. Further, Delta K (Figure 1b) values
were calculated and the appropriate K value was estimated
by implementing Evanno et al. (2005) method using the
STRUCTURE Harvester program (available at http://taylorO.
biology.ucla.edu/structureHarvester/).

The study revealed significant phenotypic and genotypic
variability across multiple rice genotypes, which highlights
promising opportunities for enhancing key traits. Phenotypic
analysis showed a wide range of variability, with traits like
days to 50% flowering, plant height, tiller number per plant,
grain yield, spikelets per panicle, panicle length, and 1000
seed weight displaying notable variation. ANOVA results
(Table 1) demonstrated significant differences for both
adjusted and unadjusted sums of squares, underscoring
the presence of substantial genetic diversity, consistent
with findings by Bairwa et al., 2023; ElI-Agoury et al., 2024.
This aligns with prior studies suggesting that phenotypic
variability is crucial for selection in crop breeding (Naseem
etal.,, 2014).

In terms of genetic parameters (Table 2), the study
found that phenotypic coefficient of variation (PCV) values
exceeded genotypic coefficient of variation (GCV) across
all traits, indicating a notable environmental influence.
Heritability in the broad sense, combined with genetic
advance, was particularly high for traits such as grain yield
and spikelets per panicle, suggesting that these traits
could be reliably improved through selection. Traits with
high heritability and genetic advance indicate a strong
genetic basis, making them suitable targets for breeding.
However, for traits with lower heritability, such as the
number of effective tillers, environmental factors likely
play a more substantial role, complicating the reliability of
direct selection.

In the biochemical analysis (Figure 1a), pigmented
rice genotypes (black, red, purple, brown) showed high
levels of bioactive compounds, with black rice exhibiting
the highest phenolic (upto 1563.59 mg GAE/100 g) and
flavonoid contents (523.69 mg RE/100 g), along with
antioxidant activity of 94.68%. These results align with
previous observations that pigmented rice tends to have
higher bioactive content compared to non-pigmented
varieties, suggesting their potential for enhancing
nutritional value. Notably, even non-pigmented white rice
genotypes demonstrated significant variation in phenolic
and flavonoid contents, with certain genotypes surpassing
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Table 1: ANOVA for augmented block design for seven traits in 140 pigmented rice genotypes

Source Df 50F PH PL NT SPP GY 1000 SW
Treatment (ignoring Blocks) 143 64.0 4%* 328.89*¢  7.46%* 3.70**  783.41** 151.41 ** 18.38 **
Treatment (eliminating Blocks) 143 44 46** 246.39** 6.52** 3.27m 606.27** 125.94%* 17.42%*
Block (eliminating Treatments) 6 1.7 9.82m 0.54" 031" 313.49 0.58™ 0.39"
Block (ignoring Treatments) 6 467.86** 1976.04**  23.08** 10.51**  4535.33*%* 607.48*%* 23.16%*
Checks 3 680.92** 2294.65%*  57.11** 29.14**  2690.30%* 433.34** 74.12%*
Test entries vs. Checks 1 1.09™ 00.0 ** 45.87 ** 1.87 6.34" 418.14** 421.74 **
Test entries 139 51.18 ** 288.83** 6.12%* 3.7 747.84%* 143.40%* 14.27%*
Error 18 1.61 6.20 1.01 1.84 206.86 0.59 0.38

PH= Plant Height, PL= Panicle Length, NT= Number of tillers per plant, SPP= Spikelets per Panicle, DF= Days to 50% flowering, GF= Grain yield,

SY= Seed yield, 1000 SW= 1000 seed weight

Table 2: Descriptive and genetic variability analysis for seven traits in 140 pigmented rice genotypes

Range Coefficient of variation
Trait Mean h2(%) GA GA%

Min Max GCV (%) PCV (%)
50F 95.77 79.94 113.44 7.35 (Low) 7.47 (Low) 96.86 (High) 14.30 14.93 (Medium)
PH 114.43 76.84 147.50 14.69 (Medium) 14.85 (Medium) 97.85 (High) 34.31 29.98 (High)
PL 21.17 14.82 27.15 10.68 (Medium) 11.68 (Medium) 83.49 (High) 4.26 20.12 (High)
NT 11.69 7.33 17.88 9.85 (Low) 15.23 (Medium) 41.83 (Medium) 1.54 13.14 (Medium)
SPP 117.83 51.38 188.67 19.74 (Medium) 23.21 (High) 72.34 (High) 40.81 34.63 (High)
GY 25.78 5.57 57.27 46.35 (High) 46.45 (High) 99.59 (High) 2460 9543 (High)
1000 SW 24.49 8.69 34.75 15.22 (Medium) 15.43 (Medium) 97.33 (High) 7.59 30.97 (High)

PH= Plant Height, PL= Panicle Length, NT= Number of tillers per plant, SPP= Spikelets per Panicle, DF= Days to 50% flowering, GF= Grain yield,
SY= Seed yield, 1000 SW= 1000 seed weight, (PCV %) Phenotypic coefficient of variation percentage, (GCV %) Genotypic coefficient of variation
percentage, (h2%) Heritability percentage, GA Genetic Advance, GA% Genetic Advance as percentage mean.

pigmented ones. This suggests that some white rice
varieties may also serve as valuable nutritional resources
(Figure 1a). Correlation analysis revealed a strong positive
association between flavonoid content and antioxidant
activity, indicating that flavonoids significantly contribute to
antioxidant properties. Morphological traits, especially grain
yield, positively correlated with panicle length, days to 50%
flowering, number of effective tillers, 1000 seed weight, and
spikelets per panicle, supporting the study indicated that
these traits are critical for yield improvement (Anisuzzaman
etal., 2023). Conversely, a negative correlation was observed
between plant height and tiller number, highlighting
potential trade-offs between plant architecture and yield
traits. Principal component analysis (PCA) identified three
significant components explaining 61.35% of the total
variance. The first two components, which captured nearly
50% of this variance, were strongly associated with plant
height, panicle length, and antioxidant activity, suggesting
these traits as key differentiators among genotypes. The
genotype-by-trait (GT) biplot (Figure 2) further supported

this, as genotypes with high PC scores for yield and
biochemical traits clustered together. In conclusion,
based on multivariate analysis and genetic evaluation, we
identified several potential rice genotypes with exceptional
performance as GS-596, Chanab, Zag-V4, and NBPGR-11-1,
that showed high antioxidant activity. For flavonoid content,
Black Rice was the top performer, followed by SKUA-544,
Zag-V3, Zag-V4,and NBPGR-21, while ZAG-V5, ZAG-V4, black
rice, GS-596, and Jehlum excelled in phenolic content. From
PCA results we found SR-2, NBPGR-16, NBPGR-2, NBPGR-
34, and NBPGR-5 contributed most towards plant height,
panicle length, and 50% flowering. Further traits like grain
yield and antioxidant activity having dominant contributions
in PC2 were represented by GS-608, GS-480, GS-484, GS-474,
and GS-621. For PC3, phenolic and flavonoid content were
key traits, with black rice, SKUA-533-1, ZAG-V4, ZAG-V15,
and SKUA-556 as leading genotypes. These genotypes hold
strong potential for breeding programs aimed at improving
rice varieties for both nutritional quality and agronomic
performance.
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Figure 1: (a): Distribution of phenols, flavonoids and antioxidant activity in colored rice germplasm., (b): Delta K showing the number of
populations, (c): Population structure of 147 rice genotypes.
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Figure 2: Genotype by trait (GT) biplot based on the individual genotypic data explaining the contribution of 10 traits to the total variation.
The biplot was based on singular value decomposition of trait-standardized data (“Scaling=1, Centering=2") and trait-focused singular value
partition (“SVP=2")

The population structure analysis grouped the population
into four sub-populations (Figure 1c), reflecting their diverse
genetic backgrounds. Landraces predominantly belonged
to the green cluster, indicating high genetic uniformity with
minimal admixture. Indian collections were largely assigned
to the yellow cluster, with some genotypes showing
admixture, suggesting historical gene flow. Advanced
breeding lines exhibited significant admixture, highlighting
their derivation from diverse parental sources. Similarly,
released varieties displayed contributions from all clusters,
reflecting efforts to combine genetic resources forimproved
traits. Collections from international sources primarily
clustered in the red group, indicating their distinct genetic

composition. This emphasized the importance of utilizing
diverse genetic resources, particularly the landraces and
exotic collections, in breeding programs to enhance genetic
diversity and adaptability. Preserving unique landraces and
leveraging exotic collections can contribute to sustainable
crop improvement efforts.
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Abstract

Plants, as sessile organisms, must adapt to dynamic environmental changes through a range of response strategies that confer
phenotypic flexibility. Breakthroughs in next-generation sequencing technologies have led to significant improvements in our
understanding of the genomic and molecular mechanisms underlying plant growth, development and stress responses. Non-
coding RNAs (ncRNAs), have emerged as pivotal regulators in these processes. This article reviews the roles of regulatory
ncRNAs in plant stress responses and development, highlighting their intricate molecular interactions. It presents a compre-
hensive atlas of differentially regulated ncRNAs across key crop genomes, enhancing our understanding of their roles in stress
responses, growth, and development. The atlas presented herein offers a foundation for further research in agronomically
important crops, paving the way for crop improvement through genetic engineering and sustainable agricultural practices.
Additionally, we discuss the role of ncRNAs that have already been functionally characterized in growth, development and

stress tolerance, providing insights into their potential for developing stress-resistant and high-yielding crops.

Keywords Non-coding RNAs (ncRNAs) - Plant stress - Gene regulation - Crop improvement - Cereals

Introduction

Plants need to meticulously coordinate their responses to
different environmental stresses with their growth, develop-
ment, and reproductive processes. They activate specific sig-
nalling pathways and adjust their gene expression to survive
and adapt. The regulatory mechanism of gene expression
is the major unanswered query in the intriguing domain of
plant stress response, and these are uncovered using novel
breakthrough technologies like multiplexing highly selec-
tive chemical probes for profiling ‘active protein in intact
cells’ (Activity Based Protein Profiling) [1]. The elements
in the regulatory system are crucial in reprogramming at the
transcriptional, post-transcriptional, and epigenomic levels
so that plants adapt to biotic and abiotic stresses [2, 3]. Sev-
eral biotechnological methods have been utilized to alter the
genetic makeup of significant crops for economic purposes,
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creating genetically modified plants with enhanced resist-
ance against biotic and abiotic stressors [4, 5]. However,
the utilization of genetically modified plants harbouring
trans- or cis-genes has faced significant scepticism due to the
potential risk of the transfer of these ‘genes’ across natural
sexual barriers, and the so-called ‘precautionary principle’
[6, 7]. Modern biotechnological approaches and technolo-
gies based on multi-omics, robotics, nanotechnology, and
plant-microbial interactions are being integrated to over-
come these challenges [8—11]. One of the most promising
molecular biology-based resources includes the major-effect
multiple trait coding ‘pleiotropic genes’ because these can
target multiple stresses simultaneously [12]. However, recent
advancements have highlighted the importance of ‘inter-
genic’ regions between protein-coding genes, which are
‘non-coding regulatory RNAs’. These RNAs are frequently
known as non-coding RNAs (ncRNAs). These ncRNA tran-
scripts were historically dismissed as transcriptional noise
due to their inability to code for proteins, and their often
poorly conserved sequences arising from regions of the
genome once thought to be inactive, known as intergenic
regions, transposons, pseudogenes and repetitive sequences
[13].
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Long non-coding RNAs (IncRNAs) function as interme-
diaries between RNA molecules and proteins. Depending
on their interactions, IncRNAs can act as transcriptional
activators, enhancing gene expression, or as repressors,
inhibiting it. Plant IncRNAs function in both cis and trans
contexts [13]. Cis-acting IncRNAs function near their sites
of synthesis. They act directly on local nucleotide sequences
or chromosomal regions associated with one or more adja-
cent genes. Conversely, trans-acting IncRNAs migrate from
their point of synthesis and can impact multiple genes, even
across considerable distances, including those located on
different chromosomes. Furthermore, IncRNAs can also
serve as precursors for small RNAs (sRNAs). Certain IncR-
NAs can form double-stranded RNA duplexes with Natural
Antisense Transcripts (NAT), generating sRNAs that per-
form regulatory functions. Additionally, IncRNAs can serve
as miRNA decoys, binding to miRNAs and preventing them
from interacting with their target mRNAs. This interference
reduces miRNA activity and relieves the repression of the
target gene. Moreover, IncRNAs often act through various
mechanisms, such as protein-protein interactions and post-
translational modifications via epigenetic regulatory mecha-
nisms, including methylation of DNA, histone modification,
and chromatin remodelling.

The review highlights a comprehensive analysis of the
roles of non-coding RNAs (ncRNAs) in regulating plant
growth, development, and stress responses. The review
attempts to present a comprehensive genome-wide atlas of
ncRNAs in field crops (cereals, pulses and legumes). Fur-
thermore, the article aims to enlist and provide useful infor-
mation about the prospects of using ‘functionally validated
ncRNAs’ to enhance crop resilience and as biomarkers for
stress tolerance.

Non-coding RNAs functions in plant growth
and development: an overview

miRNAs play a key role in modulating gene expression
across multiple aspects of plant growth and development.
The study of plant developmental stages revealed a complex
network of miRNAs and their target genes. miRNA-target
modules include miR156-SPL, miR159-MYELOBLAS-
TOSIS (MYB), miR172-APETALA 2 (AP2), and miR156-
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
[14]. The miR156-SPL module in Arabidopsis operates
as a negative regulator during the stages of germination,
vegetative growth, and reproductive development. Reduced
miR156 levels lead to increased SPL expression, thereby
accelerating these transitions. Conversely, the miR172-AP2
module facilitates these developmental transitions [15]. Ele-
vated miR172 levels decrease AP2 expression, promoting
the transition. Numerous studies have shown that miRNAs

@ Springer

function in conjunction with various hormones, including
abscisic acid (ABA) and gibberellic acid (GA), to control
the germination and dormancy of plants. For example,
miR 159 plays a critical role in modulating seed dormancy
and germination by maintaining a balance between ABA and
GA hormone levels [16]. It achieves this by targeting MYB
transcription factors, MYB33, MYB101, which positively
regulate abscisic acid signalling during seed germination
and dormancy, as shown in (Fig.1). Moreover, different miR-
NAs targeting multiple members belonging to the same gene
family contribute to a wide range of biological functions. As
an instance, miR160 negatively controls the expression of
AUXIN RESPONSE FACTORS (ARFs) in rice and Arabi-
dopsis affecting seed germination [17]. Likewise, miR167
promotes root development by regulating the expression of
ARF6 and ARF8 [18]. Polarity in leaves is regulated by tar-
geting multiple ARF genes through the generation of small
interfering RNAs (siRNAs) by miR165/166 [19]. These
observations point out the specialized regulatory functions
of miRNAs during various developmental phases. They
achieve this through their involvement in specific signalling
pathways. miRNAs can integrate their actions to modulate
a particular biological function. Within a miRNA family,
different isoforms can participate in analogous biological
functions by targeting either the same genes or various genes
[20]. An example is the involvement of the miR159a.1-
MYB and miR159a-p5-Tetraketide alpha-pyrone reduc-
tase 1 (TKPR1) modules in male meiosis, with substantial
expression observed in pollen and embryo sacs. Together
the complex regulatory network of miRNA-target modules
forms the molecular basis of plant growth and development
as shown in (Fig.1).

Besides miRNAs, siRNAs have demonstrated significant
involvement in plant development [21]. For example, the
ARF family members are targeted by the phased TAS3-
tasiRNAs which originate from the miR390-AGO7 complex.
This regulatory network is essential to many aspects of plant
development and is conserved across plant species. It affects
the genesis of embryos, root architecture, shoot apical mer-
istem (SAM) development, leaf morphology, flower devel-
opment, and phytohormone interactions during develop-
mental transitions [22]. miR828 activates TAS4-tasiRNAs,
which target MYB genes involved in anthocyanin produc-
tion in Arabidopsis. This includes the genes PAP1, PAP2,
and MYB113 [23] as shown in (Fig.1). Remarkably, two
homologous MYB genes that correspond to TAS4 orthologs
in both cotton and Arabidopsis are involved for regulating
fibre development in cotton. miR828 targets one of these
MYB genes to generate 21-nt phasiRNAs. Furthermore,
miR828 produces phasiRNAs and cis- and trans-acting siR-
NAs that also contribute to the regulation of trichome (hair)
formation [24]. While there has been less research on natural
antisense sSiRNAs (natsiRNAs) and heterochromatic siRNAs
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Fig. 1 Regulation of plant growth, development and stress responses
by miRNAs. This figure illustrates various miRNA-target modules
that are crucial for plant growth and development, as well as their

(hcsiRNAs) in plant development, they have been studied in
specific contexts. For example, cell-specific atsiRNAs have
been shown to regulate the KOKOPELLI (KPL) and ARI-
ADNE14 (ARI14) genes during the double fertilization pro-
cess in Arabidopsis. These findings underscore the diverse
and complex roles of siRNAs in governing various aspects
of plant development.

Long non-coding RNAs (IncRNAs) are implicated in
plant development through diverse regulatory pathways.
There are over 1543 experimentally verified IncRNAs from
77 species in the EVLncRNAs database. It has provided
valuable insights into the realm of long non-coding RNAs
(IncRNAs). 428 IncRNAs from 44 plant species, including
rice and Arabidopsis, have been catalogued in this data-
base [25]. In mammals, IncRNAs are recognized for their
function in gene expression regulation through chromatin
remodelling. Interestingly, certain plant IncRNAs, such as
COLDALIR, also function via this regulatory pathway. Suc-
cessful reproduction is closely tied to the precise timing of
floral transition and robust flower development in plants.
Regulation of flowering time encompasses internal signals,
such as plant hormones, and external cues, such as day
length and temperature. The prolonged cold exposure during
winter, known as vernalization, leads to the downregulation
of the major flowering repressor, FLOWERING LOCUS C
(FLC), thus promoting flowering in spring in Arabidopsis.
A number of long non-coding RNAs (IncRNAs), such as
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roles in mediating responses to abiotic and biotic stresses. The dia-
gram highlights how different miRNA regulate these processes and
adapt plant physiological mechanisms to environmental challenges

COLDAIR, COOLAIR, ANTISENSE LONG (ASL), and
COLDWRAP, are essential for precisely regulating the
expression level of the Flowering locus (FLC) [26]. As an
example, following vernalisation, COLDAIR is engaged
in suppressing FLC. It interacts with the PRC2 complex’s
CURLY LEAF (CLF) protein, with the strongest associa-
tion occurring after 20 days in the cold [27]. PRC2 must be
recruited to the FLC locus by COLDAIR in order to facili-
tate the insertion of the repressive H3K27me3 chromatin
modification.

Many long non-coding RNAs (IncRNAs) have been iden-
tified as important regulators of various aspects of flower
and reproductive development. These include LINC-AP2,
Photoperiod-sensitive genic male sterility T (PMS1T), and
Early flowering-completely dominant (Ef-cd) and Long-day
specific male-fertility-associated RNA (LDMAR) [26]. An
example of this relationship can be observed in LINC-AP2,
an intergenic lincRNA that is positioned close to the flower
development governing gene APETALA?2 (AP2). Interest-
ingly, when AP2 expression is reduced by Turnip crinkle
virus (TCV) infection, LINC-AP2 expression increases
conversely. This notable elevation of LINC-AP2 expres-
sion has been associated with the formation of abnormal
floral structures [28]. Moreover, there is a long intergenic
rice IncRNA known as XLOC-057324, which exhibits high
expression levels in reproductive organs. A comprehensive
analysis involving T-DNA insertion mutants suggests that
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this IncRNA plays a role in the regulation of flowering and
plant fertility [29].

Insights from overexpression

and loss-of-function studies into the role
of non-coding RNAs in plant growth

and development

Non-coding RNAs (ncRNAs) play critical roles in regulat-
ing plant growth and development across various stages. In
Arabidopsis thaliana, ncRNAs are involved in processes
like seed germination, lateral root development, and veg-
etative phase transition. For instance, disruption of the
miR156 — SPL13 pathway delays seedling development
[30]. miR156 and miR172 also interact to control post-ger-
mination growth, with miR156 overexpression delaying the
juvenile-to-adult phase transition [31]. Fertility, too is influ-
enced by miR156/7 targeting SPL genes, where mutations
lead to sterility [32]. In Nicotiana tabacum, miR156 plays
a key role in regulating the juvenile-to-adult phase transi-
tion. Overexpression of miR156 extends the juvenile phase,
while knockdown of miR156 accelerates the transition to
the adult phase. This miRNA also influences various vegeta-
tive traits, including leaf shape, trichome density, stomata
number, and chlorophyll content, which collectively differ-
entiate the juvenile and adult phases in tobacco [33] (Fig.1
and Table 1). In Oryza sativa, miR156 is involved in regu-
lating leaf development and phase change. Overexpression
of miR156 accelerates leaf maturation and promotes rapid
tiller initiation, while also affecting temporal gene expres-
sion, including other miRNAs. miR156 regulates leaf devel-
opment in an age-dependent manner, with higher expression
in older leaves [34]. Additionally, miR156 controls panicle
architecture by targeting genes like LAX1, LAX2, RCN2,
and OsRA2, which are involved in axillary meristem devel-
opment and pedicel length regulation. Genetic interactions
between these genes and miR156 influence panicle traits,
with a buffering mechanism suggested between miR156 and
RCN2 [35]. In Triticum aestivum, miR156 plays a crucial
role in regulating plant architecture, including tillering and
spikelet formation, by repressing SPL genes and interact-
ing with strigolactone (SL) signalling. Overexpression of
miR 156 increases tiller number but severely disrupts spike-
let formation. Specifically, miR156 represses TaTB1 and
TaBA1 through TaSPL3/17. Additionally, the SL signalling
repressor TaD53 interacts with miR156-regulated TaSPLs
to suppress TaTB1 and TaBA1, impacting both tillering and
spikelet development [36]. miR156 also influences ovary
development and carpel formation by regulating SPL genes
and meristematic activity, with overexpression causing
abnormal flower and fruit morphology [37] (Fig.1)(Table 1).
In mulberry (Morus spp.), miR156 regulates the MnSPL/
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mno-miR 172 pathway to control the vegetative phase tran-
sition. Overexpression of miR156 in transgenic Populus
extends the juvenile phase. In mulberry, miR156 represses
mno-miR172 and modulates the expression of nine MnS-
PLs, which are direct targets of miR156. MnSPLs activate
transcription of mno-miR172, but miR156 represses it to
regulate developmental transitions [38].

Root development is modulated by miR160, which regu-
lates ARF genes and influences root elongation and lateral
root formation [39], while miR164 regulates lateral root
emergence by targeting NACI1 [40]. In Medicago truncatula,
miR 160 regulates root growth and nodulation by targeting
ARF genes. Overexpression of miR160 causes root growth
defects, disorganization of the root apical meristem (RAM),
gravitropism issues, and reduced nodule numbers. miR160
expression varies during root and nodule development, with
distinct profiles for mtr-miR160d and mtr-miR160c. Acti-
vation of miR160 during early symbiotic stages was not
observed in nodulation signaling or autoregulation mutants
[41] (Fig.1 and Table 1).

In terms of grain development, the miR396 family, which
targets Growth-Regulating Factor (GRF) genes such as
GRF1, GRF6, and GRF9, plays a significant role in wheat
grain filling. Seventeen miR396 members have been identi-
fied, including five unique haplotypes, such as miR396a and
miR396n, which are absent in other species. These haplo-
types demonstrate distinct Gene Ontology (GO) enrichment
functions and are integral to grain development, with poly-
ploidization driving their diversification and enhancing the
functional networks involved in grain filling [42] (Fig.1 and
Table 1). Mutations in MIR396e and MIR396f lead to larger
grains and altered plant structure, enhancing grain yield
by promoting leaf elongation and gibberellin biosynthesis
[43]. Additionally, miR160 negatively regulates OsARF18,
affecting rice growth, development, and auxin signalling,
with overexpression of OsARF18-resistant versions lead-
ing to various growth defects [44]. miR396 regulates flower
and fruit growth by targeting SIGRFs, and overexpression
in transgenic lines results in larger flowers and fruits [45].
Finally, miR396 regulates grain size through OsGRFS,
with target mimicry of OsmiR396 increasing grain size and
improving yield. OsmiR408, regulated by OsGRFS, also
plays an essential role in grain size regulation [46] (Fig.1
and Table 1).

In shoot apical meristem (SAM) development, AGO10
sequesters miR165/166, ensuring proper SAM establishment
[47]. In Larix leptolepis, overexpression of miR166a reduces
somatic embryo (SE) formation, affects shoot apical meris-
tem (SAM) development, and enhances rooting and lateral
root formation. miR166a down-regulates LaHDZ31-34 in
transgenic lines and upregulates WOX expression, suggest-
ing an indirect role in SAM development. This indicates that
miR166a influences both rooting and SAM formation [48]
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(Fig.1 and Table 1). In Malus domestica, overexpression
of miR166a affects spur-type growth, shoot apical meris-
tem (SAM) development, and increases rooting and lateral
root formation. miR166a down-regulates LaHDZ31-34 and
upregulates WOX expression, suggesting an indirect role in
SAM development [49] (Fig.1 and Table 1). Leaf polarity
and adaxial-abaxial patterning are regulated by a complex
interplay between miR166, miR390, and tas3-derived ta-
siRNAs in maize. Accumulation of miR166 is controlled by
the transcription of its precursor loci and further modulated
by tas3-derived ta-siRNAs, which influence leaf polarity.
Tas3-derived ta-siRNAs restrict miR166 expression to the
adaxial side of the leaf, facilitating the establishment of the
abaxial side. MiR390 acts as an upstream determinant, ini-
tiating the biogenesis of tas3 ta-siRNAs and governing the
spatial accumulation of miR166. While miR390 accumulates
in the adaxial region, miR166 expression is spatially regu-
lated at both the precursor transcription and ta-siRNA bio-
genesis stages [50]. In Glycine max, miRNAs regulate key
developmental processes. miR166 and miR4422a influence
shoot apical meristem and leaf development, with miR166
showing distinct spatial patterns and miR4422a localizing
to the nucleus [51] (Fig.1 and Table 1).

miR167 is crucial for proper auxin response and rice
growth. It regulates auxin signalling by targeting OSARF6,
OsARF12, OsARF17, and OsARF25, and its overexpres-
sion results in reduced plant stature and tiller number
[52]. miR167 promotes lateral root and nodule formation
by repressing GmARF8a and GmARF8b, especially after
Bradyrhizobium japonicum inoculation [53]. miR169d
triggers early flowering by repressing AtNF-YA?2 and FLC
expression, independent of environmental factors [54]. gma-
miR156a promotes juvenile development by downregulating
SPL genes, while gma-miR172a accelerates flowering by
regulating AP2-like transcription factors during the repro-
ductive phase [55] (Fig.1 and Table 1).

In Hordeum vulgare, miR172 regulates lodicule develop-
ment and floret opening by targeting the Cly1 gene. miR172a
is the most abundant isomer in immature spikes. A mutation
in miR172’s target site reduces CLY1 protein levels with-
out affecting transcript levels. miR172 and Cly1 co-localize
in the lodicule primordium, suggesting interaction. A Hv-
miR172a mutant leads to small lodicules and failed growth,
demonstrating its role in cleistogamy regulation [56]. Over-
expression of miR172 variants in Brassica species acceler-
ates flowering but causes floral organ defects. Five miR172
clusters (a—e) were identified, with Brassica species show-
ing higher retention of miR172 compared to its target gene
AP2. Overexpression of miR172b, miR172d, and miR172e
accelerates flowering, with miR172e causing slight earliness
in B. juncea and altering floral organ formation, indicat-
ing target gene divergence [57]. In Solanum lycopersicum,
miR172 regulates floral organ identity, with mutations in
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miR172¢ and miR172d causing abnormalities in petals and
stamens. Seven miR172 genes produce four species, with
miR172¢ and miR172d being most abundant during flower
development. Co-targeting these genes via CRISPR-Cas9
results in graded floral abnormalities [58]. In Actinidia deli-
ciosa, miR172 negatively regulates AP2 to specify floral
organ identity. In the ‘Pukekohe dwarf’ mutant, increased
AP?2 transcript levels and absence of miR172 in developing
whorls cause multiple perianth whorls and petaloid features.
AP2 in kiwifruit is homologous to AP2/AP2-like genes in
other plants, with splice variants detected, including one
lacking the miR172 target site. Additionally, AP2 regulates
dormancy, accumulating in axillary buds before and after
budbreak [59] (Fig.1 and Table 1).

For fruit morphology, miR159 regulates fruit growth by
repressing SIGAMYB2, which modulates the GA biosynthe-
sis pathway, influencing fruit size and shape. Overexpression
of SIGAMYB2 leads to larger fruits, while loss of function
results in smaller, elongated fruits [60]. miR159 also affects
ovary development and fruit set by modulating auxin and
gibberellin pathways, while overexpression leads to parthe-
nocarpy [61]. In Fortunella hindsii, overexpression of csi-
miR159a or DUO1 knockout results in seedless, small fruits
and pollen abortion due to arrested pollen development and
abnormal starch metabolism. Cross-pollination experiments
confirm DUOL1 as the key target of miR159a in regulating
male sterility. DAP-seq and RNA-seq identify YUC2/YUC6,
SS4, and STPS8 as downstream targets of DUOI, involved
in auxin signalling, starch metabolism, and sugar transport.
The miR159a-DUO1 module plays a crucial role in pollen
development and male sterility in citrus [62]. In Vitis vin-
ifera, VvmiR159s regulate floral development in response
to GA by targeting Vv-GAMYB. VvmiR159¢ shows peak
expression before flowering, with its levels inversely corre-
lated to VVGAMYB. The GA-DELLA-VvmiR159¢c-VvG-
AMYB module mediates parthenocarpy, offering insights
for seedless grape breeding [63] (Fig.1 and Table 1).

Epigenetic regulation of ncRNAs has also been shown to
play an important role. For example, the epigenetic regula-
tion of miR396 impacts both vegetative phase transitions
and flowering time, emphasizing the complex regulation
of plant development by ncRNAs [64] (Fig.1 and Table 1).
Additionally, miR396 negatively regulates leaf size and pro-
motes early flowering by targeting growth-regulating factors
(GRFs) [65].

Role of ncRNAs in plant stress responses

Extensive research has delved into the regulatory functions
of non-coding RNAs in diverse stress scenarios within the
plant kingdom. Stress signals activate many regulatory ncR-
NAs, which interact with target transcripts to coordinate
important stress-responsive pathways [66]. A study used
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miRNA chips covering almost all known miRNAs in Arabi-
dopsis to analyse the expression of 117 miRNAs in salin-
ity, drought, and low temperatures [67]. Seventeen stress-
responsive miRNAs were detected. Their expression patterns
were validated through analysis, which included studying the
cis-regulatory elements in their promoter sequences. Sunkar
et al. developed a library of small RNAs from Arabidopsis
seedlings. The seedlings were subjected to a range of abiotic
stresses, such as high salinity, dehydration, cold and abscisic
acid [68]. They discovered several novel miRNAs that are
responsive to abiotic stress. For instance, treatments with
ABA, cold, dehydration, and salinity elevated the expres-
sion of miR393. Under usual stress conditions, there was
an insignificant upregulation of miR402 and miR397b.
Cold stress was the sole treatment that selectively induced
miR319c; the other treatments did not. On the other hand,
miR389a was downregulated in response to all stresses.
These results imply that stress-induced miRNAs either target
positive regulators of processes that are impeded by stress
or negative regulators of stress responses. A few recently
discovered miRNAs showed expression patterns specific to
particular tissues or developmental stages (see Fig. 1).

A comprehensive analysis of differentially
modulated non-coding RNAs in stress
responses of field crops

Rice (Oryza sativa)

According to a study profiling microRNA expression in
drought-stressed rice (Oryza sativa) using oligonucleotide
microarrays, miR-169g is the only member of the miR-169
family that exhibits a significant increase in response to
drought. Remarkably, this upregulation of miR-169g was
most pronounced in the roots (Table 2) [69]. Likewise, Zhou
et al., [70] used a microarray platform to thoroughly investi-
gate microRNA expression in rice affected by drought stress
throughout different developmental stages, ranging from
tillering to inflorescence formation. 16 microRNAs were
shown to be highly downregulated in response to drought
stress in their study (miR529miR 1035, miR396, miR159,
miR168, miR171, miR39, miR319, miR170, miR1088,
miR408, miR172, miR896, miR1030, miR156, miR1050).
In contrast, 14 microRNAs (miR901, miR1125, miR169,
miR851, miR319, miR845, miR171, miR854, miR§96,
miR474, miR395 miR903, miR1026, and miR159) consid-
erably upregulated during the drought stress (see Table 2,
Fig. 2). These findings underscore the complex and dynamic
nature of miRNA responses to drought stress in rice and
offer insightful information about the regulatory systems that
allow plants adapt to environmental challenges [70]

In another investigation, RNA-seq studies of rice leaf
subjected to drought stress uncovered distinct expression
patterns of noncoding RNAs. This analysis identified 98
long noncoding RNAs (IncRNAs) and their associated
antisense transcripts, some of which responded to drought
stress. These IncRNAs exhibited significant regulation under
drought conditions, with their expression levels inversely
correlated with those of putative target genes. A total of
98 longer than 1 kb drought-responsive IncRNAs had been
identified, including their corresponding antisense tran-
scripts. Of these, 31 were upregulated, and 67 were down-
regulated. Two natural antisense transcripts (NATs) were
identified that showed inverse correlations with their target
genes. Specifically, NAT Os02g0250700-01 exhibited an
inverse correlation with its target gene Late embryogenesis
abundant protein (LEA), and NAT Os02g0180800-01 exhib-
ited an inverse correlation with its target gene cinnamonoyl-
CoA reductase) [71] (Table 2, Fig. 2).

Furthermore, Dongxiang wild rice (DXWR), renowned
for its exceptional drought resistance, is highly valued as
a key genetic resource for developing drought-resistant
rice varieties. A study discovered that 1092 IncRNAs
expressed differentially when exposed to drought stress.
MSTRG69391 was the most significantly upregulated
IncRNA, followed by MSTRG41712 and MSTRG68635. On
the contrary, MSTRG65848, along with MSTRG27834 and
MSTRG46301, showed the most significant downregulation
among all IncRNA (Table 1). The results of these investiga-
tions improve our knowledge of the biology of IncRNAs.
Additionally, they suggest potential candidates regulators
that could possibly be used to genetically improve rice cul-
tivars’ resilience to drought [72].

Salinity is a major abiotic stress, affecting approximately
6% of the global arable land. According to a study, rice
miRNAs responsive to increased salt are miR-169¢g and
miR-169n (o) [73]. Within a miRNA cluster, miR-169n and
miR-1690 are situated 3,707 base pairs apart. The study
also revealed that these miR-169 members specifically tar-
get and cleave NF-YA gene Os03g29760, which encodes a
CCAAT-box binding transcription factor that regulates the
transcription of various genes (Table 1, Fig. 2). Furthermore,
several members of the ath-miR-169 family were found to
be upregulated in response to high salinity.

Cold stress is a significant abiotic factor that adversely
affects rice yields by damaging tissue and impeding
growth. A recent study identified 18 rice miRNAs respon-
sive to cold stress through microarray analysis. Among
the 18 identified cold-responsive miRNAs, most exhib-
ited downregulation, with notable changes observed in
the miR-167 and miR-319 families. The expression pat-
terns of these miRNAs varied over time: some, such as
miR-166k and miR-166m, were initially upregulated but
returned to baseline, while others, like miR-1868 and

@ Springer



249 Page 14 of 27

Molecular Biology Reports

(2025) 52:249

Table 2 Differentially modulated non-coding RNAs in stress responses of important field crops

Crop Regulated ncRNAs Stress condition Reference
Rice miR-169 g Drought [69]
miR901, miR169, miR1125, miR1126, miR156, miR851, miR474, miR170, miR171, Drought [70]
miR172, miR396, miR397, miR408, miR896, miR1030, miR1035, miR1050,
miR1088, and, miR159, miR159, miR854, miR319, miR171, miR319, miR395,
miR845, miR896, miR168, miR903, miR1026 and miR529
NAT 0s02g0180800-01 and NAT 0s02g0250700-01 Drought [71]
MSTRG41712, MSTRG27834, MSTRG46301, MSTRG68635, MSTRG65848 and Drought [72]
MSTRG69391,
miR-169 g and miR-169n (o) Salinity [73]
miR319b, miR167e, miR167g, miR167i, miR167d miR319a,, miR167f, miR167j, Cold [74]
miR167h
miR604, miR606, miR601, miR603, Cadmium stress [75]
miR602
miR528-ASCORBATE OXIDASE (AO) Virus defence [77]
Identified 1197 differentially expressed genes (DEGs), 131 IncRNAs (DELSs), and 52 Herbicide stress [78]
miRNAs (DEMs)
Significant expression changes in response to glyphosate, suggesting that SPL12, osa-
miR156a, and certain IncRNAs play a role in glyphosate tolerance
Wheat miR2118, miR5049, miR408, miR396, miR160, miR1858, miR172, miR395, miR166,  Drought [80]
miR159, miR472, miR477, miR482, and miR16
miR2012, miR396, miR827, miR159, miR159, miR2013, miR2006, miR393, miR444,  Erysiphe graminis [79]
miR2005, miR2001, miR827, miR2001, miR17, miR2008, miR156, miR164, and
miR2011
miR160, miR172, miR166, miR827, miR159, miR156, miR2005, miR169, and miR168 Heat stress [79]
Identified 5,309 long non-coding RNAs, 1,574 fusion genes, and 739 transcription fac- ~ Water logging [81]
tors
Maize 7245 IncRNAs were identified, including 637 nitrogen-responsive IncRNAs Nitrogen response [82]
miR164-MYB, miR156-SPL, miR159-MYB, miR160-ARF, and miR164-NAC Drought [83]
Identified 6,099 long non-coding RNAs (IncRNAs), with 3,190 differentially expressed =~ Water logging [84]
Barley Hvu-miR 156, Hvu-miR 166, Hvu-miR171, and Hvu-miR408 Drought [85]
CNT0018772 Salinity [86]
CNT0031477
50 miRNAs responsive to aluminium stress Metal stress [87]
Chickpea 4446 differentially expressed IncRNAs Salinity [88]
miRNAs: miR5213, miR5232, miR2111, miR2118 and miR530 Fusarium oxysporum [89]
miR167, miR168, miR171, miR390, miR2118, nov-miR8 and nov-miR2 Salinity stress [90]
Soybean miR-Seql5, miR-Seq13, miR166f, miR169f-3p, miR397ab, miR-Seql1, miR1513c, and Drought stress [92]
miR166-5p
miR166f, miR397ab, miR-Seq13, miR169-3p miR482bd-3p, miR1513c, miR166a-5p, Rust stress
miR4415b and miR-Seq15ab
Identified 20 conserved miRNA families (gma-miR156 a,b,c,d,e, gma-miR159b,c, Bradyrhizobium japoni-  [91]
gma-miR160, gma-miR162, gma-miR164, gma-miR166ab, gma-miR167a,b,c, gma- cum inoculation /
miR168, gma-miR169b,c, gma-miR171a, gma-miR172a,b, gma-miR319a,b,c, gma- nodulation
miR390a,b, gma-miR393, gma-miR396a,b, gma-miR397)
Identified 35 novel miRNA families (gma-miR1507, gma-miR1508, gma-miR1509,
gma-miR1510, gma-miR1511, gma-miR1512, gma-miR1513, gma-miR1514a,
gma-miR1514b, gma-miR1515, gma-miR1516, gma-miR1517, gma-miR1518,
gma-miR1519, gma-miR1520a, gma-miR1520b, gma-miR1520c, gma-miR1520d,
gma-miR1521, gma-miR 1522, gma-miR1523, gma-miR1524, gma-miR 1525,
gma-miR1526, gma-miR1527, gma-miR1528, gma-miR1529, gma-miR1530,
gma-miR1531, gma-miR1532, gma-miR1533, gma-miR1534, gma-miR 1535, gma-
miR1536, gma-miR171b, gma-miR482)
Common bean 49 novel miRNAs and 120 known miRNAs were identified Drought [94]
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Fig.2 Atlas of ncRNAs showing their functional diversity in field
crops (cereals, pulses and legumes): Rice, wheat, maize, barley,
chickpea, soyabean and common bean, respectively (from left to

miR-1850, showed transient upregulation followed by
downregulation. miR-1435 and miR-535 demonstrated
sustained positive induction at 24 hours. Downregulated
miRNAs, including miR-167a and miR-319a, experienced
significant reductions after 12 hours, with others showing
declines after 6 hours. Early downregulation was observed
in miR-444a, miR-1320, miR-1876, miR-171a and miR-
156k after 1 hour. Overall, these findings highlight the
dynamic response of rice miRNAs to cold stress, shedding
light on the regulatory processes that underlie rice’s ability
to adapt to cold stress (Table 2, Fig. 2) [74].

Additionally, to explore novel miRNAs regulated by
heavy metal stress, a study created a small RNA library from
rice seedlings subjected to toxic concentrations of cadmium
(Cd**). Sequencing and analysis of the library revealed 19
novel miRNAs belonging to six different families. The study
emphasized the distinct expression patterns of rice miRNAs
in response to Cd exposure in both leaves and roots. Spe-
cifically, miR603, miR602, and miR601 were found to be
upregulated in the roots, whereas miR602 and miR606 were
downregulated in the leaves. Furthermore, miR604 exhibited
reduced levels in the roots (Table 2, Fig. 2) [75].

right). The tagged ncRNAs (* brown colored) have been functionally
validated, primarily using overexpression and knockout/ knockdown
studies

Beyond regulating stress responses through miRNA-
target modules in plants, evidence supports their involve-
ment in biotic stress responses triggered by bacteria, fungi,
viruses, and insects [76]. The miR528-Ascorbate oxidase
(AO) module is critical in boosting antiviral responses in
rice viral defence. After infection with rice stripe virus
(RSV), miR528, in conjunction with AGO18, enhances
ascorbate oxidase (AO) activity. This increase in AO activ-
ity results in higher levels of basal reactive oxygen species
(ROS), which bolsters the plant’s defence mechanisms
against the virus (Table 2) [77].

Glyphosate has become an integrated component of weed
management in crops. An interesting study explored the
molecular responses of rice to glyphosate stress, focusing
on miRNAs, IncRNAs, and mRNAs [78]. The non-trans-
genic glyphosate-tolerant germplasm CA21 was treated
with glyphosate, and high-throughput sequencing identified
1197 differentially expressed genes (DEGs), 131 IncRNAs
(DELs), and 52 miRNAs (DEMs). The study found that
SPL12 was a target of osa-miR156a_L+1, and a IncRNA-
miRNA-mRNA regulatory network was established. The
results showed significant expression changes in response
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to glyphosate, suggesting that SPL12, osa-miR156a, and
certain IncRNAs play a role in glyphosate tolerance. These
findings contributed to the development of glyphosate-tol-
erant rice varieties.

Wheat (Triticum aestivum L.)

In an early study small RNA libraries were created from
wheat leaves to investigate the role of miRNAs in regu-
lating wheat’s response to powdery mildew infection and
heat stress [79]. The study identified miRNAs with distinct
expression patterns in response to powdery mildew, with
some specific to susceptible or resistant lines and others
affecting both. Validation through northern blotting sup-
ports the sequencing results and underscores the role of
these miRNAs in wheat’s defense mechanisms. Solexa high-
throughput sequencing was employed to discover 153 miR-
NAs, which were identified in 51 known and 81 unknown
families. Of these, it was found that 12 miRNAs responded
to heat stress, and 24 miRNAs responded to powdery mil-
dew infection. According to the study, novel wheat miRNAs
may regulate 149 target genes (Table 2, Fig 2). Northern blot
analysis confirmed that miR156 was downregulated in both
genotypes, miR164 in JD8-Pm30 only, and miR393 in JD8-
Pm30 but not JD8 [79]. In the same study, for heat stress
analysis, miR172 decreased significantly while, miR168,
miR2005, miR159, miR160, miR156, miR169, miR827and
miR166 were upregulated, with miR168 showing the high-
est increase of 2.9-fold. Northern blot analysis validated the
expression patterns of 9 miRNAs in TAM107 and the heat-
susceptible Chinese Spring (CS) genotype. Furthermore, 9
miRNAs were found to be co-regulated by both powdery
mildew infection and heat stress, with miR827 and miR2005
upregulated in response to both stressors, suggesting their
potential role in managing both abiotic and biotic stress in
wheat [79]

Additionally, a study investigated drought stress-respon-
sive miRNAs in bread wheat (Triticum aestivum cv. Sivas
111/33) using miRNA microarray screening. The analysis
revealed that distinct expression patterns of these miRNAs
and their target transcripts were identified between wheat
cultivars that are drought-tolerant and those that are drought-
sensitive. Notable drought-responsive miRNAs included
miR396, miR1858, miR160, miR169, miR172, miR395,
miR166, miR2118, miR159, miR472, miR477, miR482,
miR408, and miR5049. Regulatory network analysis high-
lighted that miR395 targets multiple transcripts, while
miR159 and miR319 share several target genes (Table 2,
Fig. 2) [80]

Waterlogging impacts wheat production, and PacBio
SMRT combined with Illumina sequencing has been used to
study its genetic regulation. The analysis of two wheat cul-
tivars, XM55 and YM158, identified 5309 long non-coding
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RNAs, 1574 fusion genes, and 739 transcription factors.
Illumina sequencing of waterlogged and control plants
revealed 6829 differentially expressed genes (DEGs), with
photosynthesis-related genes downregulated, and steroid
biosynthesis and plant hormone signaling genes upregulated.
The two cultivars exhibited different genetic responses to
waterlogging, offering insights into the molecular breeding
of waterlogging-tolerant wheat [81].

Maize (Zea mays)

In maize, a critical crop cultivated in various environments,
research into responses to stresses such as nitrogen (N) defi-
ciency and drought has focused on regulatory molecules
including IncRNAs and miRNAs. A study on N-deficiency
stress investigated intergenic and intronic IncRNAs in maize
B73 leaves at the V7 growth stage using deep sequencing.
This analysis identified 7245 IncRNAs, with 637 being
responsive to nitrogen deficiency and displaying distinct
expression profiles. Expression network modeling revealed
that these nitrogen-responsive IncRNAs were primarily
grouped into one of three co-expressed modules (Table 1).
This enriched module contained genes primarily involved in
NADH dehydrogenase activity, oxidative phosphorylation,
and nitrogen compound metabolism [82].

In a study analyzing miRNome in two maize inbred lines
with different drought tolerances, 11 miRNAs uniquely
responded to drought in the drought-tolerant line HO82183,
while 34 miRNAs were specific to the drought-sensitive line
Lv28 in leaf tissues. In root tissues, 19 miRNAs in HO82183
and 23 miRNAs in Lv28 uniquely responded to drought.
Expression analysis of miRNA-mRNA modules showed
negative regulatory interactions for miR160-ARF, miR164-
MYB, miR156-SPL miR164-NAC and miR159-MYB. The
miR164-MYB and miR164-NAC modules in H082183
regulated drought response in an ABA-dependent manner,
whereas miR156-SPL and miR160-ARF modules in Lv28
were associated with the suppression of metabolic processes
in drought-exposed leaves (Table 2, Fig. 2) [83].

A recent study on hypoxia-related regulatory network in
maize under waterlogging identified 6099 long non-coding
RNAs (IncRNAs), with 3,190 differentially expressed, along
with protein-coding genes involved in key metabolic and
hypoxia response pathways, such as glycolysis and methio-
nine metabolism. The study also highlighted enriched tran-
scription factor families (AP2-EREBP, bZIP, NAC, bHLH,
MYB) and identified co-expression of IncRNAs with genes
linked to waterlogging tolerance [84].

Barley (Hordeum vulgare)

Barley shows considerable genetic variation in how it
responds to different abiotic stresses. A study on barley’s
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response to dehydration identified 28 novel miRNAs across
18 families, with differential expression observed in leaf and
root tissues under stress conditions [85]. Key microRNAs
(miRNAs) like Hvu-miR408, Hvu-miR156, Hvu-miR171,
and Hvu-miR 166 were found to exhibit significant responses
to dehydration stress (Table 2, Fig. 2). To investigate their
role further, a modified 5 RLM-RACE (RNA Ligase-
Mediated Rapid Amplification of cDNA Ends) technique
was employed, which allowed for the retrieval of seven dis-
tinct cleaved miRNA transcripts from leaves under drought
stress. Complementary in silico analysis predicted a total
of 15 potential EST (Expressed Sequence Tag) targets that
might be regulated by these miRNAs. Expression analy-
sis revealed a positive correlation between these miRNAs
and the suppression of their target mRNA transcripts under
dehydration stress [85].

Salinity is a major stressor that limits plant productivity
globally. Barley, however, shows notable adaptability to salt
stress. A study examining four barley genotypes (Hasat, Bey-
sehir 99, Konevi 98, and Tarm 92) under 150 mM salt stress
during a 3-day germination period revealed that IncRNA
CNTO0018772 was down-regulated in both roots and shoots
of all genotypes, indicating a common stress response [86].
Conversely, IncRNA CNT0031477 was down-regulated in
most genotypes but up-regulated in Tarm 92. This unique
expression pattern in Tarm 92 may contribute to its enhanced
salt tolerance (Table 2).

Although generally more sensitive to aluminum (Al)
toxicity than other cereals, Barley shows significant geno-
typic variation in Al tolerance. A well-known mechanism
of Al tolerance in barley is Al exclusion, facilitated by the
Al-activated citrate transporter 1 (HVAACT1). However,
recent research found that the expression of HvAACT1 and
the secretion of citrate and other organic acids did not fully
explain the difference in Al tolerance between the Al-toler-
ant wild barley X729 and the Al-sensitive cultivated barley
Golden Promise. To investigate further, a study constructed
eight small RNA libraries from the roots of barley genotypes
under both control and Al-treated conditions. Deep sequenc-
ing of these libraries identified 342 miRNAs in total, with
296 being common to both genotypes. Comparative analy-
sis identified 50 miRNAs responsive to Al stress (Table 2,
Fig. 2), including some uniquely expressed in XZ29 and
potentially linked to Al tolerance [87].

Chickpea (Cicer arietinum L.)

Chickpea (Cicer arietinum L.) is an important legume
known for its high protein and fiber content. A recent study
focused on identifying long non-coding RNAs (IncRNAs)
induced by salt stress in chickpea roots and exploring their
regulatory roles. The research uncovered 3452 novel IncR-
NAs across all eight chickpea chromosomes. Comparing

salt-tolerant cultivars (ICCV 10, JG 11) to salt-sensitive
cultivars (DCP 92-3, Pusa 256), differential expression
analysis revealed 4446 IncRNAs with modified expres-
sion under different salt treatments. Of these, 373 IncR-
NAs were expected to have cis-regulatory influence over
the genes they target. Furthermore, it was shown that 80
distinct IncRNAs interacted with 136 distinct miRNAs as
endogenous target mimics (eTMs), indicating their role
in the regulatory network for the response to salt stress.
Functional analysis identified the roles of these IncRNAs
in the regulation of genes associated with salt stress,
including aquaporins (e.g., TIP1-2 and PIP2-5), potassium
transporters, transporter family genes, serine/threonine-
protein kinases, and different transcription factors (e.g.,
WRKY, AP2, bZIP, ERF, NAC and MYB). Addition-
ally, about 614 IncRNA-derived simple sequence repeats
(SSRs) were shown to be unique molecular markers for
chickpeas that had greater efficacy and specificity (Table 2,
Fig. 2) [88].

A research investigation was done to identify chickpea
miRNAs linked to biotic and abiotic stresses, focusing
on increasing soil salinization and Fusarium oxysporum
f.sp. ciceris caused wilt disease. Three libraries were cre-
ated from chickpea seedlings, one treated with salt, one
untreated, and one infected with fungus, in order to study
miRNA responses. In addition to 59 new miRNAs and
their star sequences, the study found 122 conserved miR-
NAs from 25 distinct families. Four miRNAs specific to
legumes were found in all libraries: miR2118, miR5232,
miR5213, and miR2111 (Table 2). Notably, miR530 was
significantly upregulated in response to fungal infection
and targeted genes encoding zinc finger and microtubule-
associated proteins (Fig. 2) [89].

Drought stress is a serious challenge to the sustainable
growth and productivity of legumes such as chickpea. A
study comparing the drought-tolerant cultivar Pusa 362
with the drought-sensitive SBD377 revealed that root
volume was similar between the two genotypes, sug-
gesting that drought tolerance in Pusa 362 may involve
mechanisms beyond root traits. The study identified 16
validated miRNAs, among which miR171, miR167and
miR168 were significantly upregulated in the roots of Pusa
362. These miRNAs regulate key components of drought
stress responses, including scarecrow-like transcription
factors, WD-repeat proteins, and auxin response factors.
In the shoots of Pusa 362, miR390 and miR2118 were also
increased. The newly identified miRNAs with the high-
est expression levels in Pusa 362 were nov_miR8 in the
roots and nov_miR?2 in the shoots. Surprisingly, nov_miR8
targets a gene encoding laccase, whilst nov_miR?2 targets
GMP synthase (Table 2, Fig. 2) [90].
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Soyabean (Glycine maxL.)

An early study in soybean inoculation with Bradyrhizobium
Jjaponicum for nodulation identified 20 conserved, and 35
novel miRNA families in its roots [91]. A subsequent study
used Solexa technology to sequence eight small RNA librar-
ies from various soybean types, including drought-sensitive
and drought-tolerant seedlings and rust-susceptible and
rust-resistant varieties, under both stressed and unstressed
conditions. This sequencing revealed 256 miRNAs, com-
prising 24 novel families, six conserved families, and 22
known soybean families. miR397ab, miR166-5p, miR1513c,
miR169f-3p, and miR-Seq13 were upregulated in drought-
sensitive plants and downregulated in drought-tolerant ones.
Under pathogen stress, miR-Seq13, miR397ab, miR166a-5p,
miR169-3p, and miR166f were downregulated in susceptible
plants but stable in resistant ones. miR-Seq07 was downreg-
ulated in both genotypes during rust infection, miR-Seq11
decreased in susceptible plants post-inoculation, and miR-
Seq15ab was downregulated in susceptible plants but upreg-
ulated in resistant ones under stress [92] (Table 2, Fig. 2).

Common bean (Phaseolus vulgaris)

Legumes like common beans are crucial globally due to their
high protein content and caloric value. Common bean yields
are severely threatened by drought stress. However, research
into microRNAs in Phaseolus vulgaris has been relatively
limited. The first identification of miRNAs in common
beans used an in silico approach in 2008 [93]. Four small
RNA libraries were made from common bean cultivars that
are both drought-tolerant and drought-sensitive under both
drought and control circumstances in order to investigate
this. Sequencing yielded 120 recognised miRNAs and 49
new miRNAs. Under drought stress, nine known miRNAs
were downregulated, and seven were upregulated. Among
the novel miRNAs, five were upregulated, and three were
downregulated. Sixteen miRNAs that may be related to com-
mon beans’ response to drought stress were identified by
RT-gPCR validation [94] (Table 2, Fig. 2).

Functionally characterized non-coding RNAs
in field crops: unravelling their role in stress
responses

Non-coding RNAs (ncRNAs) have been functionally char-
acterized in various cereal crops in response to different
abiotic stresses, such as drought, salinity, and cold. For
example, OsmiR535 negatively regulates drought, salinity,
and dehydration tolerance in rice, where its knockout lines
enhance resistance to these stresses [95]. Cold stress toler-
ance in rice has been associated with Osa-miR319b, which

@ Springer

targets transcription factors involved in cold stress responses
[96]. Osa-MIR319a and Osa-MIR319b are involved in leaf
morphogenesis and cold stress tolerance. Both miRNAs
are downregulated under cold stress (4 °C) but induce
expression of target genes OsPCF5 and OsPCF8 [97], and
miR 1320, which negatively regulates cold tolerance by
targeting PHD17, a protein involved in the cold signalling
pathway [98]. OsmiR156 enhances cold stress tolerance by
targeting OsSPL3, which regulates OsWRKY71 in rice [99]
(Table 3, fig. 2). The combination of tae-miR398 and IncR-
NAs (LncR9A, LncR117, LncR616) regulates cold tolerance
in wheat. miR398 targets CSD1 (Copper/zinc superoxide
dismutase), while these IncRNAs act as competing endog-
enous RNAs (ceRNAs) to indirectly regulate CSD1 expres-
sion. This regulatory mechanism enhances cold stress resist-
ance in wheat, showcasing the potential of IncRNA-miRNA
interactions in stress adaptation [100].

miR408 plays a crucial role in drought tolerance in rice
by targeting genes involved in blue copper proteins and other
species-specific targets. Overexpression of miR408 in the
drought-sensitive PB1 cultivar in rice results in improved
vegetative growth, electron transport rate, photosynthetic
efficiency, and dehydration stress tolerance [101]. Addi-
tionally, 83 target genes with antagonistic expression under
drought stress were identified, highlighting miR408 as a
positive regulator of growth and drought tolerance in rice
(Table 3, Fig. 2). In Glycine max, miR166 regulates genes
involved in the abscisic acid (ABA) signaling pathway, with
ATHBI4-LIKE directly activating these genes. This forms
a feedback loop between miR166 and ATHB14-LIKE, con-
tributing to drought resistance in soybean. Drought stress
represses miR166 accumulation, leading to upregulation
of its target gene ATHBI4-LIKE. The GmSTTM166 trans-
genic line, which has optimal miR166 knockdown, exhib-
ited enhanced drought tolerance without compromising yield
[102]. Another vital miRNA, Gma-miR398c, negatively reg-
ulates drought tolerance in soybean by targeting peroxisome-
related genes involved in reactive oxygen species (ROS)
scavenging. Overexpression of gma-miR398c in Arabidop-
sis thaliana results in reduced germination, increased leaf
water loss, and decreased survival under drought condi-
tions. In soybean, overexpression of gma-miR398c causes
impaired ROS scavenging, higher electrolyte leakage, and
increased stomatal opening compared to miR398c knockout
and wild-type plants under drought stress [103]. In barley,
drought stress accelerates flowering through two miR172b
isoforms. hvu-miR 172b-3p promotes flowering by cleaving
AP2 genes, while hvu-miR172b-5p increases trehalose-
6-phosphate synthase, boosting trehalose content for osmo-
protection. After rewatering, trehalose levels decline, high-
lighting its role in stress mitigation and flowering induction.
These modules work together to coordinate osmoprotection
and flowering under drought stress [104] (Table 3, Fig. 2).
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In Cicer arietinum (chickpea), overexpression of miR166
enhanced drought tolerance, improving photosynthesis,
transpiration, and water-use efficiency. It increased proline
content, SOD, peroxidase, and catalase activity, while reduc-
ing H,0, levels. miR166 also interacted with Pseudomonas
putida RA (PGPR) to boost drought resistance, and ATHB15
was identified as its target via RLM-RACE. [105] (Table 3,
Fig. 2).

The miR396b/GRF6 module enhances salt tolerance in
rice. Transgenic rice plants with miR396b mimic (MIM396)
and GRF6 overexpression (OE-GRF6) exhibited 48.0% and
74.4% higher survival rates under salt stress compared to
wild-type plants. These lines showed reduced H,O, accu-
mulation and increased activity of ROS-scavenging enzymes
(CAT, SOD, POD). ZNF9 was identified as a negative
regulator of salt tolerance, while MYB3R, a downstream
target of miR396b/GRF6, further enhanced salt tolerance,
suggesting that the miR396b/GRF6 network could be tar-
geted to develop salt-tolerant rice with enhanced yields
[106]. Gm-miR396a is crucial for soybean development
and salinity tolerance. Gene-edited miR396a-GE lines, cre-
ated using CRISPR/Cas9, showed enhanced salinity toler-
ance, increased branching, higher grain yields, and improved
growth compared to control plants. However, overexpres-
sion of pre-miR396a (Pre-miR396a-OE lines) resulted in
developmental defects such as dwarfism, abnormal inflores-
cences, smaller seeds, larger stomata, and downregulation of
photosynthesis-related genes [107].

In wheat, the identification of 19,000 novel IncRNAs in
cultivars SR4 and JN177 revealed differential expression
under alkaline (saline-alkali) stress. SR4 showed the differ-
ential expression of 5691 IncRNAs, while JN177 expressed
5932. Knockdown of specific IncRNAs (L0760 and L2098)
increased sensitivity to alkaline stress, while knockdown of
L6247, L0208, and L3065 enhanced stress tolerance. The
study also constructed IncRNA-miRNA-target-mRNA net-
works, highlighting that some IncRNAs promote tolerance
while others increase sensitivity to stress [108] (Table 3,
Fig. 2).

TaemiR408 plays a key role in regulating phosphate
uptake under starvation and ABA signaling during salt stress
in wheat. Overexpression of TaemiR408 in Nicotiana taba-
cum enhances stress tolerance, biomass, and photosynthesis,
while also improving Pi acquisition by increasing NtPT2
expression [109]. It also upregulates NtPYL2 and NtSAPK3
involved in ABA signaling and osmolyte synthesis. Knock-
down of these targets impaired stress tolerance, confirming
TaemiR408’s role in stress adaptation [110]. Tae-miR408
targets TaCLP1, a chemocyanin-like protein involved in
both abiotic and biotic stress responses. Overexpression of
TaCLP1 in Schizosaccharomyces pombe enhanced growth
under salinity and copper stress, while silencing TaCLP1
in wheat reduced resistance to stripe rust. The contrasting
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expression patterns of TaCLP1 and tae-miR408 under Pst
infection and high copper stress suggest that tae-miR408 is
a key regulator of wheat stress tolerance [109]. In maize,
phosphorus (Pi) deficiency causes miR399 upregulation,
which targets ZmPHTI;1, ZmPHTI;3, and ZmPHTI;13 to
regulate Pi transport. PILNCR?2, a long non-coding RNA
transcribed from the opposing strand of ZmPHT1, 1, mod-
ulates the effect of miR399 by preventing its cleavage of
ZmPHTI mRNAs. Overexpression of PILNCR?2 increases
low-Pi tolerance, while knockdown or knockout of PILNCR2
reduces tolerance to low phosphorus, highlighting its role in
maintaining Pi homeostasis via regulation of miR399 [111].

TaMIR444a regulates wheat’s tolerance to nitrogen
starvation by modulating NRT genes (e.g., NtNRTI.1-
s, NtNRT2.1) and antioxidant enzymes (e.g., NtCAT1;1,
NtPOD1;3). Overexpression of TaMIR444a in tobacco
improves growth, biomass, nitrogen content, photosynthe-
sis, and ROS detoxification. Transcriptome analysis identi-
fied genes involved in signal transduction, metabolism, and
phytohormone response, highlighting miR444a as a key
regulator of nitrogen-starvation tolerance [112]. ALEX1, a
IncRNA, regulates disease resistance in rice by activating
the jasmonate pathway [113].

These studies underscore the critical role of ncRNAs
in modulating stress responses and improving tolerance to
environmental stresses in key field crops.

Conclusion

The emerging field of plant non-coding RNAs (ncRNAs)
underscores their pivotal role in regulating various biologi-
cal processes, yet their full potential in crop research remains
underutilized. Despite the growing body of work, most of
these ncRNAs have not yet been functionally evaluated in
the context of stress. The increasing availability of refer-
ence genomes and advances in transcriptome sequencing and
computational tools offer valuable opportunities for compar-
ative analyses, revealing ncRNA sequence similarities and
functional conservation across species. There is a need to
construct a ‘comprehensive genome-wide atlas’ of ncRNAs
for crop plants, and identify ‘biomarkers for stresses’ like
drought, salinity, cold, metal stress, nutrient stress, herbi-
cide stress, waterlogging and pathogen infections. The lack
of specific mutant lines for ncRNAs in modal plants like
Arabidopsis presents a challenge in their functional valida-
tion under stress. Future research should focus on developing
mutant lines using genome-editing technologies for func-
tionally validating novel ncRNAs and identifying ‘candidate
ncRNASs’. Such advancements could facilitate the targeted
development of crops with enhanced resilience to abiotic
and biotic stresses, advancing agricultural productivity and
sustainability.
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Abstract

Saffron occupies a vital place in the agricultural scenario of Jammu and Kashmir, India. India ranks only second to Iran
in saffron production, yet it ranks twelfth among global saffron exporters. Therefore, we need to explore ways to promote
both its production and export. Traditional saffron areas of Jammu and Kashmir are not able to meet the local demand
within India, and therefore India imports saffron of around 88 tons per annum, causing an expenditure of US$ 38.2 million
to the exchequer. This trend can be reversed by introducing saffron in non-traditional areas of J&K. Herein, we discuss
the issue from the perspective of farmers of the non-traditional areas involved in saffron on-farm trials in 16 districts of
J&K. While the environmental suitability of an area with respect to its climate is the prime requisite for growing saffron,
however, the ‘know-how’ of farmers regarding the management practices involved in the cultivation-module of this pecu-
liar crop (saffron) is vital for its successful introduction in the non-traditional areas. Saffron cultivation involves several
unique practices, and our study revealed a low level of knowledge among the farmers of new areas about these practices.
However, the most encouraging observation was that the respondents expressed a willingness to grow saffron in new areas,
provided some government-sponsored schemes are set up to support them.

Keywords Saffron - Crocus sativus - Climate change - Survey - Farmers

Background and introduction

The Union Territory of Jammu and Kashmir in western
Himalaya is blessed with the cultivation of saffron (Crocus
sativus var. cashmerianus Royle), which dates back to 5th
century BC. It grows on upland karewas located at an altitude
of 1585 to 1677 m above the mean sea level, which makes
it the highest altitude grown saffron in the whole world.
Although India ranks second to Iran in saffron production,
it is twelfth among global saffron exporters. Unlike Spain,
France and Italy, which import Iranian saffron, add value
to it, and resell it at a higher price. India imports around 88
tons of saffron annually to meet domestic demand, which

< Amjad M. Husaini
amjadhusaini@skuastkashmir.ac.in

Genome Engineering and Societal Biotechnology Lab,
Division of Plant Biotechnology, SKUAST-K, Shalimar,
Srinagar 190025, J&K, India

2 Division of Agricultural Statistics, SKUAST-K, Shalimar,
Srinagar 190025, J&K, India

Published online: 29 August 2025

represents 15.7% of the total global saffron imports. Saf-
fron worth US$ 38.2 million was imported to India in 2024
to satisfy its demand, making it the world’s second-largest
importer. Unfortunately, saffron cultivation in the traditional
saffron-growing regions of Kashmir has faced a severe cri-
sis for over two decades, as evident from its dwindling share
in global production (Husaini et al. 2013).

Climate change is emerging as a big challenge to saffron
cultivation (Husaini 2014). The maximum area recorded
under saffron crop was 5707 hectares (in 1997), with an
estimated production of 16 tons at that time (Husaini et
al. 2010). Several factors have led to the declining trend
in its area and production (Husaini et al. 2013), amongst
which climate change is the most challenging. Although the
phenology of saffron is well defined for Kashmir, climate
change has led to erratic weather conditions, causing varia-
tions in the onset of these developmental stages. A signifi-
cant limitation to saffron cultivation in traditional areas is
that saffron fields are almost entirely rain-fed, with mini-
mal irrigation facilities. The total rainfall during the saffron
growing period is usually sufficient, but its distribution is
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Table 1 Major crops grown at non-traditional sites and corresponding

income generation potential

Site Major crops grown Annual
Income
generation

Malangpora (Pulwama) Rice, Apple, Almond, High

Saffron

Pombay (Kulgam) Rice, Apple Medium

Balpora (Shopian) Apple, Walnut High

Dooru (Anantnag) Oats, Rice, Mustard Low

Kulangam (Kupwara) Walnut Low

Udina (Bandipora) Wheat, Maize, Millets Low

Mirgund (Baramulla) Mulberry, Rice Low

Harran (Budgam) Vegetables Low

Shuhama (Ganderbal) Rice, Vegetables Medium

Shiva (Doda) Maize, Vegetables Low

Meer (Udhampur) Flowers, Maize, Millets Low

Mabhore (Reasi) Maize, Oats Low

Gandhari (Ramban) Maize, Beans Low

Budhal (Rajouri) Fodder maize Low

Mandi (Poonch) Maize, Vegetables Low

Benhama (Ganderbal) Forest trees, Walnut Low

Shalimar (Srinagar) Vegetables, Rice High

FOH Shalimar Forest trees Medium

irregular, and it has now become common for saffron to face

water stress.

The huge gap between supply and the domestic demand

for saffron can be met by extending its cultivation to new
sites. There have been several attempts to introduce the
crop in non-traditional areas of northern India through eco-
logical modelling, some of which have shown promising
results (Kumar et al. 2022). Our earlier study demonstrated

the technical feasibility of cultivating saffron in the most
neglected and marginal areas of the trans-Himalayan region,
specifically in the Jehlum and Chenab valleys of Kashmir
(Sheikh et al. 2023). Furthermore, we experimented with the
introduction of organic saffron in kitchen gardens to meet
the household requirements of saffron, and the results were
encouraging (Husaini and Wani 2020). The areas receiving
100-150 cm of well-distributed rainfall with snow in winter
are suitable for saffron cultivation, and rains in September
are essential for meeting the water requirement of corms for
good flower yields. Several recent studies show that the pro-
duction of saffron through organic means is a way forward,
and incorporating biofertilizers in its production technology
can add further economic value to it (Magotra et al. 2021;
Naik et al. 2024).

According to our estimate, increasing the area from the
current (3785 ha) to a projected (12404 ha) will generate
employment opportunities, and will increase saffron pro-
duction from 16.5 tons to 78 tons, which will fetch an addi-
tional exchequer of Rs 9 billion (Rs 900 crore). Hence, there
is a need to popularise saffron outside the traditional belt
and share its production technology with common people in
semi-arid regions and areas not suitable for irrigated crops.
The results presented are based on a study that was carried
out in Jammu & Kashmir, in ten districts of Kashmir and six
districts of the Jammu region. Herein, we discuss the saf-
fron diversification in non-traditional areas of J&K from the
farmers’ perspective.

Table 2 Variables considered

: S. No Variables Answer Coding

for the evaluation of l.<now} edge 1. Have you ever heard about saffron? Yes 1
about saffron and their assigned

coding No 0

2. Is saffron grown in your area? Yes 1

No 0

3. Do you know how saffron is grown? Yes 1

No 0

4. Do you know which part of saffron is marketable? Yes 1

No 0

5. Do you know how saffron is harvested? Yes 1

No 0

6. Do you consume saffron? Yes 1

No 0

7. Are you interested in growing saffron? Yes 1

No 0

8. Do you have suitable land for growing saffron? Yes 1

No 0

9. Do you feel the need of govt. sponsored scheme Yes 1

for growing saffron? No 0

10. Are you satisfied with the on-field demonstration ~ Yes 1

provided by NMHS sponsored project? No 0
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Table 3 Responses of the farmers  vriables Answers Total

to the questionnaire applied Yes No
Have you ever heard about saffron? 78 12 90
Is saffron grown in your area? 81 90
Do you know how saffron is grown? 5 85 90
Do you know which part of saffron is marketable? 32 58 90
Do you know how saffron is harvested? 5 85 90
Do you consume saffron? 38 52 90
Are you interested in growing saffron? 74 16 90
Do you have suitable land for growing saffron? 62 28 90
Do you feel the need for a government-sponsored scheme to grow saffron? 88 2 90
Are you satisfied with the on-field demonstration provided by the NMHS-spon- 84 6 90

sored project?

Interactive survey with the farmers

Eighteen (18) sites, across ten districts of Kashmir (Pulwama,
Kulgam, Anantnag, Shopian, Budgam, Kupwara, Bandip-
ora, Ganderbal, Baramulla, Srinagar) and six districts of the
Jammu region (Poonch, Rajouri, Udhampur, Doda, Reasi
and Ramban) were selected for On-Farm Trials of saffron
cultivation, and ninety farmers associated with these trials
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Fig. 1 Multiple Correspondence Analysis (MCA): (a) Pot of the fre-
quency of all the variable categories; (b) Variance explained among
different dimensions (axes) of the MCA; (¢) The location of the

were randomly selected. A survey was conducted to cata-
logue traditional crops grown in these areas, the knowledge
of farmers about saffron and their socio-economic status
(Babu and Glendenning 2019). The farmers were catego-
rised into three income groups, viz., low income (<20,000—
75,000/annum), medium income (75,000—1,50,000/annum),
and high income (> 1,50,000/annum). Many temperate fruits
are grown in the J&K orchards, including almonds, apples,
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cherries, pears, peaches, walnuts, and the major cereals
grown are rice, maize and wheat. The prevailing farming
system, based on Maize/Wheat/Fodder farming systems,
yields a profit of Rs 27,000 to 32,000/ha, compared to Rs
3,22,000/ha achieved under the saffron farming system. The
areas where saffron diversification has potential have been
tabulated for income in Table 1. Saffron yield in the non-
traditional areas was low compared to Kashmir’s traditional
areas. However, if saffron cultivation in these areas is scaled
up, it may lead to almost doubling the income for the con-
cerned farmers.

A questionnaire based on ten questions was prepared
(Table 2), and the farmers were asked to give their perspec-
tive on these (Pennings et al. 2002). All of the responses
were given instantly in an unbiased manner. These responses
were recorded and are summarised in Table 3. The approach
to communication aimed at respondent farmers was mainly
focused on awareness about saffron. According to the data
collected in this survey, 87% of the respondents were fairly
familiar with saffron, while 13% hadn’t even heard about it.
Moreover, 10% of the respondents were aware that saffron
was grown in their respective areas, while 90% were not.
About 6% of the respondent farmers knew how saffron is
grown, while the rest were unsure about the process. About
36% of the respondent farmers knew which part of saffron
is marketable, and 64% were unaware of which part of the
saffron flower is marketable. About 6% of the respondent
farmers knew how saffron is harvested, while the rest didn’t.
About 42% of the respondent farmers had consumed saf-
fron, while 58% of the respondent farmers had never con-
sumed saffron in their lives. About 82% of farmers were
interested in growing saffron, and about 69% had suitable
land for growing saffron. More than 97% of farmers believe
that a government-sponsored scheme is necessary to sup-
port saffron cultivation. Around 93% of farmers were sat-
isfied with the on-field demonstration provided under the
project. The data used to measure the subjects’ perception
of saffron are presented in Figs. 1 and 2.

A multiple correspondence analysis (MCA) was per-
formed using the collected data (Abdi and Valentin 2007).
The plot of the frequency of all the variables is explained
(Fig. 1a). Most of the variance was explained in the MCA’s
first two axes, with axis-1 having 31.8% and axis-2 with
18.3% of the variance explained (total of 50.1%) (Fig. 1b).
The dependent variables: “Have you ever heard about saf-
fron?”, “Is saffron grown in your area?”, “Do you know how
saffron is grown?”, “Do you know which part of saffron is
marketable?”, “Do you know how saffron is harvested?”,
“Do you consume saffron?”, “Are you interested in growing
saffron?”, “Do you have suitable land for growing saffron?”,
“Do you feel the need for the government-sponsored scheme
for growing saffron?”, and “Are you satisfied with the

@ Springer

Fig. 2 Correlation among different variables

on-field demonstration provided by the NMHS-sponsored
project?” had different positions in the ordination space. Of
these variables, the information corresponding to Have you
ever heard about saffron and “Do you know how saffron is
harvested?”” did not contribute to the variance explained in
axes 1 and 2 (Fig. 1b). The location of the answers within
the response for each dependent (response) variable within
the ordination space of the MCA is shown in Fig. 1c.

It is also noteworthy that there is a high correlation
among variables indicating whether one has heard about
saffron, whether saffron is grown in their area, whether they
have suitable land for saffron cultivation, and the need for
any government-sponsored scheme (Fig. 2a). This is also
seen with the variable of “Are you interested in growing
saffron?”, “Do you know how saffron is harvested?”, “Do
you consume saffron?”” and Do you know which part of saf-
fron is marketable cognates (Fig. 2b). Also variable, “Do
you know how saffron is grown?” and “Are you satisfied
with the on-field demonstration provided by the NMHS-
sponsored project?” (Fig. 2¢). This indicates that only one
variable can be selected in the future, predicting other view-
points (i.e., Are you satisfied with the on-field demonstra-
tion provided by the NMHS-sponsored project and the need
for any government-sponsored scheme?).

Most of the variance was explained in the MCA’s first
two axes, with axis-1 having 31.8% and axis-2 with 18.3%
of the variance explained (total of 50.1%).

Conclusion

Growing saffron in areas which are eco-physiographically
similar to traditional saffron growing areas of Kashmir
seems promising and could enhance saffron production in
Jammu and Kashmir, India. Saffron On-Farm Trials were
set up in all ten districts of the Kashmir division and 6 dis-
tricts of the Jammu division, which had never been used for
saffron cultivation. The project was financially supported
under a Government of India-sponsored National Mis-
sion on Himalayan Studies initiative. One of the important
observations was that, while the feasibility of a new area
for saffron cultivation depends primarily on eco-physiology,
the saffron know-how of farmers regarding the management
practices involved in its cultivation is pivotal for the overall
success of the crop in the non-traditional areas.
Furthermore, the survey focused on questions related to
the saffron area, including cultivation technology, harvest-
ing, marketing, and local consumption. The study revealed
a low level of knowledge about saffron cultivation and mar-
keting. However, respondents expressed a willingness to



Vegetos

Individuals - MCA

Individuals - MCA

b)

Groups
m Interest_n

E Interest_y

DIm2 (18.4%)

10-

0
Dim1 (31.8%)

i Groups §_ Groups
© ©
Z @ Hear_n Z E area_n
~ ~
E Hear _y £ E] area_y
o a
Dim1 (31.8%)
§ Groups §_ Groups
© 1 ©
Z E schem_n Z E Suitable_n
~ ~
£ [El schem_y E @ Suitable_y
[a] a
05- :
10- *
. i .
- 0 1
Dim1 (31.8%)
Individuals - MCA

Groups

m Consum_n
E] Consum_y

DIM2 (18.4%)

0
Dim1 (31.8%)

Individuals - MCA

Groups

@ harvest_n
IE harvest_y

DIm2 (18.4%)

Individuals - MCA

Groups

_____________ [#] marketn
E market_y

Dim2 (18.4%)

0
Dim1 (31.8%)

Individuals - MCA

Groups

E] grown_n
E] grown_y

Dim2 (18.4%)

|
|
4 0

1
Dim1 (31.8%)

Individuals - MCA

Groups

Satisf_n

L#] satsty

DIm2 (18.4%)

I
4 0 1
Dim1 (31.8%)

@ Springer



Vegetos

grow saffron under some government-sponsored scheme(s),
as saffron is a peculiar crop with many distinctive charac-
teristics that are unique to it. Saffron introduction into new
areas should be encouraged as it is a unique crop in terms
of its potential and is recognised as ‘red gold’. This can
increase the saffron area from 3785 ha to 12,404 ha, gen-
erating employment opportunities for youth. Furthermore,
saffron production will increase from 16.5 tons to 78 tons,
meeting 90% of the domestic demand in India, saving on
foreign exchange and fetching an additional exchequer of
Rs 9 billion (900 crore) for J&K.
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ARTICLE INFO ABSTRACT

Keywords: Saffron (Crocus sativus L.) is a triploid sterile plant and autumnal flowering geophyte with corms. As a subter-
Corm rot ranean organ, the corm is susceptible to soil-borne diseases and corm rot is the most destructive disease causing
Cmm_g sativus severe yield losses. In the present study, diseased corms showing the symptoms of rot were collected from
II:/Imu;lt,iIgug:[;nalysis different saffron fields in Pulwama district, Kashmir (India), to isolate the causal pathogen. Isolations from
Saffron diseased corms exhibiting typical symptoms of corm rot consistently were categorized into two distinct fungal

culture types. Based on pathological and morpho-cultural characteristics, one isolate type was identified as
Fusarium oxysporum. However, in contrast to the documented morphological characteristics of F. oxysporum, the
second isolate type displayed notable differences, suggesting a distinct fungal identity. To confirm its identity at
the molecular level, a multigene-based characterization approach employing internal transcribed spacer ITS
(ITS1/ITS4), translation elongation factor 1-alpha (tefl-a), and beta-tubulin (B-tub2) was used. The phylogenetic
analysis using a polyphasic sequencing approach, identified the causal pathogen as Fusarium acuminatum. To our
knowledge, this is the first report of F. acuminatum from the saffron-growing region of India and the first step

towards managing saffron corm rot in India.

1. Introduction

Crocus sativus (Iridaceae) is a bulbous perennial herb widely culti-
vated globally in warm temperate regions. The vibrant crimson stigmas
and styles of Crocus sativus flowers are utilized as a valued condiment,
dye, and aroma, and they possess antioxidant and immense medicinal
properties [1,2]. This species is characterized by its triploid chromo-
some number and male sterility, rendering it incapable of producing
viable seeds for reproduction. Propagation of saffron is achieved solely
through vegetative reproduction via its corms. India is one of the few
countries globally engaged in the commercial cultivation of Crocus sat-
ivus L. Kashmirianus, with an area spanning 3674 ha and a productivity
of 2.61 kg per hectare [3,4]. Jammu and Kashmir (J&K) is the only re-
gion in India where saffron is cultivated on a commercial scale. The
cultivation is primarily concentrated in the districts of Pulwama, which
account for 76 % of the total saffron-growing area [5].

The area dedicated to saffron cultivation worldwide has significantly
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E-mail address: amjadhusaini@skuastkashmir.ac.in (A.M. Husaini).
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decreased due to a range of biotic and abiotic factors [6,7]. Corm rot, in
particular, has been identified as a critical biotic constraint that hinders
the successful cultivation of saffron in both established and new growing
areas [8,9]. The disease is classified as a corm rot complex due to the
involvement of multiple pathogens and secondary saprophytes associ-
ated with the rotting of the corm. The intensive cultivation and mono-
culture of saffron in the Kashmir Valley and the persistent use of
diseased planting material have led to frequent outbreaks of corm rot
diseases [5,10]. Corm rot primarily affects saffron crops during the
flowering period (October-November) and the grubbing period
(May-July). Surveys have shown that corm rot infestations are wide-
spread, with nearly every saffron field in Kashmir affected [5], and
incidence levels ranging between 70 % and 80 %. Additionally, reports
indicate a 100 per cent disease incidence with severity ranging from 6 to
46 per cent, leading to a drastic reduction in saffron yield in India [11].

Corm rot infections typically occur through injuries to the corms.
Infected corms exhibit dark-brown, sunken, and irregular patches
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beneath the scales, primarily near the root and bud regions. In severe
cases, the entire corm may decompose into a black, powdery mass.
Additionally, the foliage of affected plants often displays symptoms of
die-back [5]. Corm rot is attributed to various pathogens, including
Rhizoctonia crocorum, Phoma crocophila [5] Macrophomina phaseolina,
Fusarium moniliforme var. intermedium, F. equiseti, Fusarium oxysporum, F.
pallidoroseum, F. solani, Mucor sp., Penicillium sp. and Sclerotium rolfsii [5,
12-14].

Fusarium spp. are predominant pathogens causing corm rot in
saffron, and recently, Fusarium nirenbergiae, Fusarium commune, and
Fusarium annulatum were identified as agents of corm rot in China [15,
16]. This identification was achieved through a combination of
morphological and cultural characteristics, along with multilocus
sequence analysis (MLSA) using concatenated partial sequences of rpb2
(the largest subunit of DNA-directed RNA polymerase II), tef1 (translation
elongation factor 1-a), and the f-tubulin gene (tub2). No such molecular
studies have been conducted on saffron corm rot in India [17].

In India, existing research reports the F. oxysporum as the causal
organism of saffron corm rot and the identity of the pathogen was based
on morphological characteristics and ITS sequencing [11,13], and not
on multigene sequence analysis. The present study aimed to address this
gap by characterizing Fusarium species associated with corm rot of
Crocus sativus L. Kashmirianus in India. This was achieved through
pathogenicity tests, morphological assessments, and molecular tech-
niques involving DNA barcoding based on including internal transcribed
spacer (ITS), translation elongation factor 1-alpha (tef1-a), and beta-tubulin
(tub2).

2. Materials and methods
2.1. Field survey and sample collection

A survey was conducted in traditional saffron growing areas of
Pulwama district Kashmir (74°58'0"E, 34°1'30"N, 5173 m above sea
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level), in northern Himalayan region of India during October
2023-2024 to assess the status of saffron corm rot. The survey areas
included the traditional saffron growing region Pampore and its
adjoining areas (Fig. 1,Table 1). Three fields were chosen randomly from
each village to collect the diseased samples.

2.2. Isolation and purification of corm rot pathogen

Infected plants exhibiting typical symptoms of corm rot were
collected and the fungus associated with the diseased corms was isolated
by tissue bit technique, purified by single spore method and maintained
on PDA slants at 25 + 1 °C [11,13].

2.3. Identification of the isolated fungus

2.3.1. Morpho-cultural characterization

The mono-conidial isolates were characterized for their morpho-
cultural characteristics and compared with authentic descriptions [18,
19]. The colony features with respect to colour, shape and size were
visually assessed. For the morphology of the fungus, the wet mounts in
lactophenol and cotton blue of 15 days old culture were examined under
a microscope and the observations concerning different morphological
characters such as shape, colour, septation of mycelium, conidiophore
and conidia were recorded.

2.4. Pathogenicity studies

2.4.1. In vitro pathogenicity test

The in vitro pathogenicity of the isolated fungus was established on
healthy saffron corms following the protocol adopted by Bayona et al.
[20]. The outer skin (tunic) of the corms was peeled off, and the peeled
corms were disinfected with 5 % sodium hypochlorite for 10 min, fol-
lowed by 70 % ethanol for 1 min. The sterilized corms were then rinsed
three times with sterile distilled water and air-dried. Using a sterile glass

7acseE 7s0aE

Study Area

£

WON

.
b R

35N

N

3N

740E

7430 750E 7530E

FavanE

7avseE T5aE TszE

Fig. 1. Isolated fungal pathogens responsible for causing corm rot in saffron (Crocus sativus L. Kashmirianus) and its morpho-cultural characteristics: a) Front view, b)
Back view, ¢) Macroconidia and Chlamydospores of F. acuminatum (d) Sampling area in traditional saffron growing region of India.
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Table 1
Details of the thirteen sampling sites and corm rot symptoms recorded at each
location.

S. Location Latitude longitude Symptoms observed

No.

1) Pampore 34.006° N 74.9238° E Leaves turning yellow
and drooping.

2) Khrew 34.0209° N 74.9998° E Foliage withering and
dying.

3) Ladhu 33.9984° N 74.9939° E Foliage drooping; Small
spots on corms
surrounded by yellowish
halos, soft rot and tissue
decay with foul smell

4) Dussu 33.9985° N 74.9669° E Dieback of shoots; Corm

disintegrating into a
dark, powdery mass
emitting foul smell.
Foliage withering;
Irregular, sunken dark
brown lesions beneath
the corm.

5) Munpora 34.015793° N 74.956146° E

6) Sambora 34.0241° N 74.9267° E Foliage withering; Deep,
sunken brown patches
forming under the corm.

7) Balhama 34.0329566° 74.9464764° Shoots wilting and

N E collapsing, with vascular
discoloration.

8) Lethpora 33.9675° N 74.9647° E Complete drying and
death of foliage; Corms
turning into dark
powdery mass.

9) Awantipora  33.9218° N 75.0139° E Foliage withering; Corm
softening and decaying.

10) Koil 33.8782° N 74.9472° E Leaves turning yellow
and start drooping.

11) Wayun 34.027382° N 74.965861° E  Leaves yellow; Tiny
specks on corms with
surrounding chlorotic
halos.

12) Barsoo 33.963921° N 74.978742° E  Wilting of the shoots.

13) Konibal 34.0084° N 74.9485° E Shoots gradually wilting

and drying out; Corms
sunken and damp.

rod, two diametrically opposite wounds, 5 mm in diameter and 5 mm
deep, were made on each test corm. A spore suspension (1 x 107 spor-
es/ml) was prepared from the seven-day-old culture of test fungus
grown on potato dextrose broth at 25 °C with shaking at 150 rpm. The
spore suspension so prepared was used to inoculate the detached corms.
The inoculation was made by immersing the corms in a 250 ml spore
suspension for 24 h, while corms immersed in sterile distilled water
served as control. Following immersion, the corms were transferred in
sterile plastic beakers with moist absorbent cotton covering the bottom
of the beakers, and then incubated at 25 °C in the dark for 25 days [20].
Three replicates were maintained for both inoculated and control corms.
After incubation, the corms were cut across the two inoculation points,
and pictures were taken. The fungus was re-isolated from the artificially
infected corms and compared with the initially isolated and inoculated
fungus to satisfy the Koch’s postulates.

2.4.2. In vivo pathogenicity test

The pathogenicity of the isolated fungus was also confirmed on
potted saffron plants using the rhizosphere inoculation technique, as
adopted by Najar et al. [21]. The soil was autoclaved to sterilize it, and
pots were prepared for corm planting. The pots were inoculated with 10
per cent (w/w) test fungal cultures grown on sand maize meal medium
(90 g of sand and 10 g of maize meal), and kept for 7 days inside a
walk-in-plant growth chamber at 25 + 2 °C. Before sowing, the test
corms were disinfected with 5 % sodium hypochlorite for 15 min and
then rinsed three times with sterile water. The corms transplanted in
uninoculated sterilized soil served as control. Three replicates were
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maintained for both inoculated and control corms. The pots were kept
for 5 weeks under controlled conditions in the walk-in-plant growth
chamber, with a light/dark cycle of 18/6 h and temperatures of 25 °C
during the day and 21 °C at night [21,22].

2.5. Molecular characterization

The DNA was isolated from seven-day-old mycelium harvested from
potato dextrose agar (PDA), frozen in liquid nitrogen, ground, and ho-
mogenized with 2 mL pre-warmed cetyl trimethyl ammonium bromide
(CTAB) buffer (65 °C, 10 min). The homogenate was incubated at 65 °C
for 1 h, followed by extraction with chloroform:isoamyl alcohol (24:1).
After centrifugation (13,000 rpm, 20 min), the aqueous phase was
collected, and DNA was precipitated with chilled isopropanol and stored
overnight. The DNA pellet was washed with 70 % ethanol, air-dried, and
dissolved in TE buffer. RNA was removed using DNase-free RNase A. The
genomic DNA bands were visualized on a 0.8 % agarose gel. The primers
used for amplification were EF-1/EF-2 (F- CATCGAGAAGTTCGA-
GAAGG: R-TACTTGAAGGAACCCTTACC), targeting the nuclear trans-
lation elongation factor 1-alpha (tefl1) gene; Tub2F/Tub2R (F-
GGTAACCAAATCGGTGCTGCTTTC: R- AACCTCAGTGTAGT-
GACCCTTGGC), targeting the p-tubulin gene; and ITS1/ITS4 (F-
CTTGGTCATTTAGAGGAAGTAA: R-TCCTCCGCTTATTGATATGC), tar-
geting the internal transcribed spacer ITS-region [23-26](Table 3). Poly-
merase chain reaction (PCR) was performed using 5 pL PCR buffer (10X)
1 pL of forward primer (10 pM), 1 pL of reverse primer (10 pM), 1 pL of
dNTPs (10 mM), 2 pL of genomic DNA (2245.51 ng/pL), Taq polymerase
0.5 pL and 39.5 pL of DNase-free water. The PCR protocol included an
initial denaturation at 95 °C for 2 min, followed by 35 cycles of dena-
turation at 95 °C for 30 s, annealing at 54 °C, 52 °C and 55 °C respec-
tively for 30 s, and extension at 72 °C for 2 min. A final extension was
carried out at 72 °C for 10 min [25,26].

2.6. Sequencing and phylogenetic analysis

PCR products amplified using EF-1/EF-2, Tub2F/Tub2R and ITS1/
ITS4 were outsourced for sequencing to Barcode Biosciences, Bangalore,
India. Sequences were assembled to generate the consensus sequence for
phylogeny and sequence identity matrix using BioEdit Sequence Align-
ment Editor Version 7.0.9.0. The nucleotide sequences were confirmed
through basic local alignment search tool (BLAST) analysis (http://www
.ncbi.nlm.nih.gov/). The searches were performed against the Nucleo-
tide collection (nr/nt) and restricted to sequences from type material.
The dendrogram was constructed using the MEGA 11 (Molecular
Evolutionary Genomics Analysis Version 7) software [27]. The se-
quences were submitted to GenBank. Pairwise sequence identity
matrices were generated using the Sequence Demarcation Tool (SDT)
v1.2 (http://web.cbio.uct.ac.za/) to assess sequence similarity.

3. Results
3.1. Morpho-cultural characterization

Isolations from diseased corms exhibiting typical symptoms of corm
rot consistently categorized into two distinct fungal culture types. The
cultural and morphological characteristics of the isolates were studied
on PDA medium in pure culture. One culture type displayed a cottony or
floccose colony, varying in color from white to pale violet. Based on its
morphological characteristics, particularly its coloration, this isolate
was identified as F. oxysporum which has been previously reported as a
causal agent of saffron corm rot (Table 1S) [5,12-14].

The second fungal culture type exhibited a distinct pink to salmon
pigmentation with yellow edges. Concentric ring formations were
observed on both the upper and lower surfaces, characteristic of its
growth pattern. In contrast to the documented morphological charac-
teristics of F. oxysporum, this isolate displayed notable differences,
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suggesting a distinct fungal identity. The colony demonstrated rapid
growth, reaching 90 mm in diameter after 14 days of incubation at 25 +
1 °C. Initially, the purified culture formed abundant whitish cottony
colonies with extensive aerial hyphae. As the culture matured, the col-
ony surface developed a distinct pink to salmon pigmentation, while the
edges remained yellow.

Microscopic examination revealed smooth, branched, and septate
mycelium. Mycelium was smooth, branched, septate, slendrical co-
nidiophores were short, simple, and measured 32.5 pm-53.5 pm in
length and 3.5 to 5.1 width in size. The macroconidia were falcate,
slender, and distinctly curved at the base, with 3-5 septa and measured
23.4-52.1 pm x 4.5-6.8 pym in length and width, respectively. The
microconidia were rare. Chlamydospores were intercalary, produced
singly or in chains, nearly spherical, hyaline and measured 10.7-14.2
pm in diameter (Fig. 1,Table 2). Based on these characteristics and their
comparison with the authentic descriptions, the fungus was identified as
the F. acuminatum [19,28]. Further studies were conducted to confirm its
identity through molecular studies and to evaluate its pathogenic
potential.

3.2. Pathogenicity test

Pathogenicity of the isolated fungus was established on detached
corms under in vitro conditions and in vivo on potted saffron plants
grown under greenhouse conditions. Symptoms were observed on
inoculated corms and potted plants, whereas no symptom development
was observed in control plants in both the cases (Fig. 2). The inoculated
corms rotted and subsequently turned the white surface of corms to
yellow and ultimately to black, resulting in the rotting and death of the
corms after 25 days of inoculation. The inoculated potted saffron plants
produced symptoms like chlorosis, drooping, and rolling of the leaves
resulting in the death of foliage and subsequently rotting of the corms
and death of the whole plant after 35 days post-inoculation. The fungus
on re-isolation from the artificially infected tissue resembled the initially
isolated and inoculated pathogen, satisfying Koch’s postulates (1884).

3.3. Molecular characterization

The PCR amplification of genes tefI-a, tub2 and ITS (ITS1/ITS4) from
Fusarium generated amplicon sizes ~300bp, ~400bp and ~600bp,
respectively (Fig. 3,Table 3). The PCR amplicons were sequenced and
BLASTn analysis revealed the sequence similarity of 100 % with
F. accuminatum type strain JX397865 [29] at the tefI locus, 100 % at

Table 2
Morpho-cultural characteristics of Fusarium acuminatum causing saffron corm
rot.

Fungal Shape Color Size Septation
propagule
Colony Smooth, Distinct pink to 90 mm Septate
branched salmon diameter in
pigmentation, 14 days
while the edges
were yellow
Hyphae Aerial/ Hyaline 3.20-4.20 Septate
Smooth, pm
branched
Macroconidia Falcate, Hyaline 23.4-52.1 3-5 septa
slender, and pm X
distinctly 4.5-6.8 pm
curved at the
base
Conidiophores Cylindrical, Hyaline 32.5-53.5 Septate
short and pm X
simple 3.5-5.1 pm
Chlamydospores  Singly or in Hyaline 10.7-14.2 -
chains, nearly pm in
spherical diameter
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ITS1/ITS4 locus (OL832226) [30] and 99.40 % at the tub2 locus
(ON960209) [31]. BLASTn of ITS, tefl-a, and tub2 loci sequences indi-
cated similarity with the type strain of F. acuminatum, which supported
our preliminary morphological identification of this isolate. The Se-
quences obtained were deposited in GenBank, with accession numbers
PQ319729 (ITS), PQ492270 (tefl-a), PQ492271 (tub2) (Table 3).

3.4. Phylogenetic analysis

An optimal dendrogram was constructed using MEGA 11 software v
5.05, and different taxa were clustered together in a bootstrap test 1000
replicates using sequences of tefl, tub2 and ITS regions that were
compared with their respective hits retrieved from the NCBI database
and compared with the already available F. acuminatum sequences
(Fig. 4,Table 4). The phylogenetic analysis of the query sequences
PQ492270, PQ492271, and PQ319729 (all fungal origin) was conducted
to evaluate their evolutionary relationships within the Fusarium genus.
The phylogenetic clustering revealed five distinct clusters within the
Fusarium genus. The query sequence

Corm rot in C. sativus has increasingly restricted crop production in
India over recent years. Observations of disease distribution suggest that
the pathogen has spread extensively across saffron-producing regions. It
indicates that infested corms are likely a primary source of inoculum
[14]. The present study was initiated with the aim of isolating the
pathogen responsible for corm rot disease in C. sativus L. Kashmirianus.
Previous studies have reported that corm rot in saffron is caused by
different formae specialis of Fusarium oxysporum, including F. oxysporum
f. sp. gladioli, iridiacearum, and saffrani [40]. In the saffron-growing re-
gions of the Kashmir Valley, corm rot caused by F. oxysporum and F.
solani is considered highly destructive [5,7]. Traditionally, the identi-
fication of Fusarium species has relied on morphological characteristics.
However, distinguishing between different Fusarium species can be
challenging [13,34,41]. Fusarium species share similar characteristics,
and their morphological traits can be affected by factors such as culture
media, temperature, and light. Additionally, these methods do not ac-
count for intraspecific variability. Consequently, a polyphasic approach
is required for accurate species identification. This approach integrates
morphological, biological, and genetic characteristics to provide a
comprehensive analysis [42-44]. Previous studies have suggested that
combining single-locus datasets to construct multilocus phylogenetic
trees offers greater overall support compared to single-gene phylogenies
[45,46].

Recent advances in molecular biology and morphological surveys
have led to the discovery of numerous cryptic species within F. oxy-
sporum [15,41,47]. Consequently, the taxonomy of the genus has un-
dergone significant revisions [48]. Several genomic sequences have
been used to analyse intraspecific variability in Fusarium, the g-tubulin
gene (f-tub2), regions of the ITS rDNA region including ITS1, 5.8 S and
ITS4 and the translation elongation factor gene tef-la to discriminate
FOSC population diversity [16,35,49,50]. The tefl locus is frequently
chosen for taxonomic studies of Fusarium due to its single-copy nature
and significant sequence polymorphism among closely related species
[51,52]. p-Tubulin proteins are fundamental to cellular function, and
their genes are highly conserved across different species, similar to other
‘housekeeping’ genes. The S-tubulin genes display at least 60 % amino
acid similarity between the most distantly related lineages, reflecting
their essential role and conservation [53,54]. ITS rDNA is most
frequently studied because of species specificity of this region and they
are known to provide better resolution at the sub-species level and thus
sequence analysis is a superior choice for phylogenetic studies in the
F. oxysporum species complex [55-57]. There are no such studies on
saffron corm rot in Kashmir, India.

In the present study, morpho-cultural identification, pathogenicity
testing and multigene phylogenies identified F. acuminatum as the causal
agent of corm rot in saffron fields in Pampore. Pathogenicity tests con-
ducted in vivo and in vitro demonstrated that the isolate was virulent on
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Un- inoculated Inoculated
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Fig. 2. Pathogenicity test on Crocus sativus L. Kashmirianus plants and detached corms with fungal isolate F. acuminatum. Typical external symptoms of saffron corm
rot were seen in plants inoculated with 35dpi a) in pots, b) roots and shoots, ¢, d) in corm sections inoculated with 25dpi and uninoculated controls.

ITS (~600bp)
tub2 (~400bp)

. tef1(~300bp)

Fig. 3. Molecular detection of Fusarium acuminatum by PCR using the ITS (ITS1/ ITS-4), tefl and tub2 primer pair sets. The purified gDNA from the Fusarium isolate
was used as template. Lanes: L1: 100bp ladder, Lanes- a to d: gDNA amplified using ITS: Lanes e to g :gDNA amplified using tub2; Lanes h to k:gDNA amplified using

tefl primer pair sets and L2 : 100bp ladder.

Table 3
Details of PCR and DNA sequencing.

Primer name Primer sequence Size of amplicon (bp) Tm (°C) Accession numbers

ITS1 CTTGGTCATTTAGAGGAAGTAA ~600 55 PQ319729 (ITS1/ITS4) https://www.ncbi.nlm.nih.gov/nuccore/PQ319729

1TS-4 TCCTCCGCTTATTGATATGC

B-tubulin -F GGTAACCAAATCGGTGCTGCTTTC ~400 52 PQ492271 (tub2) https://www.ncbi.nlm.nih.gov/nuccore/PQ492271.1?report=fasta
p-tubulin -R AACCTCAGTGTAGTGACCCTTGGC

tef-F CATCGAGAAGTTCGAGAAGG ~300 54 PQ492270 (tef1) https://www.ncbi.nlm.nih.gov/nuccore/PQ492270

tef-R TACTTGAAGGAACCCTTACC

intact plants and detached corms, respectively. In vitro assays have been
previously conducted for plant pathogenicity tests (potato, hyacinth)
[20,58], and a similar assay was used in the present study. After 20-25
days of inoculation with fungal culture, the F. acuminatum inoculated
corm was completely covered with fungal mass, in contrast to the

uninoculated control, which showed no signs of fungal infection. The
results support the earlier reports, which recount almost the same in-
cubation period in different species of Fusarium infecting corm [11,35].
Further, the rhizosphere inoculation of the potted saffron plants pro-
duced characteristic symptoms like chlorosis, drooping, and rolling of
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. @ JF496581.1F acuminatum isolate C3RA.032 tefigenepartial cds
D. JF496578.1F acuminatum isolate C1RA.007 tefigenepartial cds
@ 12338578 1F annulatum isolate JFA12 teflgenepartial cds
@ KX752419.1F acuminatum strain JBL539 teflgenepartial cds
) D. MZ338563.1F.commune isolate JFC1 tefigenepartial cds
b?. MT814622.1F nirenbergiae isolate AN1 tefigenepartial cds

) @ KJ194170.1F acuminatum strain MP31 tefigenepartial cds
@ KPB68658.1F acuminatum strain AAFAWY137A22 tefgenepartial cds
@ VH484963.1F oxysporum strain CBS 221.49 tefigenepartial cds
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@ KX702711.1F acuminatum strain G15SMX1-12-1 teflgenepartial cds

:)D. JF46579.1F acuminatum isolate C1RA.045 teflgenepartial cds 000 0. MT864726.1F nirenbergias isolate J03 tub2genepartial cds 0
M @ MT864727.1F nirenbergiae isolate SH1 tub2genepartial cds

@ MT864723.1F nirenbergiae isolate JD2 tub2genepartial cds

@ IT864720.1F nirenbergias isolate JD1 tub2genepartial cds

@ MT864722.1F nirenbergiae isolate GY6 tub2genepartal cds
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strain CPC 25792 partial cds
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Fig. 4. Phylogenetic relationships of Fusarium acuminatum causing corm rot in Crocus sativus L. Kashmirianus from India, based on a) tefl, b) tub2, and c) ITS1/4
sequences. The isolate obtained in this study is marked by red triangle. The Neighbor-Joining method was used to construct the phylogenetic trees with branch
lengths of 66.258 (tefl), 37.000 (Tub2), and 21.045 (ITS1/I1TS4). Analyses included 857 (17 taxa), 1311 (19 taxa), and 603 (17 taxa) nucleotide sites, respectively.
Bootstrap consensus trees were derived from 1000 replicates, with branches supported by bootstrap values >50% retained. Evolutionary distances were calculated
using the p-distance method, expressed as base differences per site. Codon positions included 1st, 2nd, 3rd, and noncoding regions. Ambiguous sites and positions
with <95% site coverage were excluded (partial deletion option). Analyses were performed in MEGA 11.

the leaves, resulting in the death of foliage, subsequently rotting of
corms and death of the whole plant after 3-5 weeks of inoculation [5].

The pathogen was re-isolated from sym s PQ492270, PQ492271, and
PQ319729 showed close evolutionary relationships, particularly with F.
acuminatum. PQ492270 clustered distinctly within the fungal clade,
showing evolutionary proximity to F. acuminatum strains (e.g.,
JF496579.1, JF496581.1), with slight genetic divergence indicated by
moderate branch lengths. Similarly, PQ492271 grouped closely with F.
acuminatum isolates (e.g., KJ572784.1, 0Q433926.1), reflecting evolu-
tionary similarity while maintaining unique traits. PQ319729 formed a
subgroup within the F. acuminatum clade (e.g., KP325408.1,
JX114782.1, MK764994.1), indicating close genetic ties with minor
variability. Other Fusarium species, such as F. nirenbergiae (e.g.,
MT864726.1, MT864727.1), F. oxysporum (e.g., MH485135.1,
MH485054.1), F. commune, and F. annulatum, contributed to the
remaining distinct clusters, highlighting genetic diversity and evolu-
tionary separation from the query sequences. Overall, the placement of
PQ492270, PQ492271, and PQ319729 within or near the F. acuminatum
group underscores their evolutionary relatedness to this species. The
pairwise identity matrices for tef1-a, tub2, and ITS gene sequences were
generated to evaluate sequence similarity among isolates. The percent-
age identity ranged from 70 to 100 % for tef1-a, 82-100 % for tub2, and
92-100 % for ITS sequences (Fig. 5). The matrices, visualized using the
Sequence Demarcation Tool (SDT) v1.2 (http://web.cbio.uct.ac.za/),
depicted the degree of similarity between sequences, with each colored
cell representing a pairwise comparison.

4. Discussion

ptomatic tissues, fulfilling Koch’s postulates and confirming that F.
acuminatum is pathogenic to saffron. The fungal isolate obtained from
saffron corms in this study was initially presumed to be F. oxysporum,
given its global prevalence and documented association with saffron
corm rot in India and other parts of the world [5,40]. Previous studies
have identified F. oxysporum as the causal organism of saffron corm rot,
and these studies are based solely on morphological characteristics and
ITS sequencing [11]. This initial assumption was further supported by

the pinkish pigmentation observed during the preliminary stages of
growth. However, the pigmentation of the isolate remained consistently
pink to salmon, whereas authentic literature describes F. oxysporum as
producing pink to purple pigmentation on culture media. The macro-
conidia of the fungus were observed to be slightly curved with pointed
ends, a characteristic feature of F. acuminatum, while F. oxysporum
typically produces straight or slightly curved macroconidia with blunt
ends [18,19,28]. Additionally, the retention of pink to salmon pigmen-
tation further aligned with the characteristics of F. acuminatum. More-
over, a detailed examination employing multigene sequence analysis, as
discussed below, distinguished them as F. acuminatum. Earlier, F. acu-
minatum has been identified as the causal agent of saffron corm rot in
Khorramabad, Iran [59].

The validity of the morphological identification was confirmed
through phylogenetic analysis using molecular data. Amplification of
the Internal Transcribed Spacer (ITS) region with genus- and species-
specific primers, along with the Transcription Elongation Factor (tef1-a)
gene and p-tubulin (tub2) primers, was carried out for the accurate
identification of the pathogen. The PCR products were sequenced, and
the pathogen was accurately identified based on sequencing of the ITS1-
ITS4, tefl1-a, and tub2 regions. These genetic markers are widely recog-
nized for their utility in the taxonomic and phylogenetic identification of
fungi [6,41]. Sequence alignment using CLUSTALW revealed that
sequence similarity was consistent, irrespective of the geographic origin
of the isolates, confirming the reliability of these regions in dis-
tinguishing fungal species [24,60].

In the phylogenetic study, F. acuminatum sequences of ITS, tef1-a and
tub2 genes were compared with their respective hits retrieved from NCBI
database and were compared with the already available F. acuminatum
sequences. The phylogenetic analysis of the fungal query sequences
PQ492270, PQ492271, and PQ319729 revealed close evolutionary re-
lationships with F. acuminatum. All three sequences clustered within the
F. acuminatum clade, with PQ492270 and PQ492271 showing moderate
genetic divergence from other strains of F. acuminatum (Fig. 4).
PQ319729 formed a subgroup within this clade, indicating minimal
genetic variability. Other Fusarium species, such as F. nirenbergiae,
F. oxysporum, F. commune, and F. annulatum, formed distinct clusters,
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Table 4
List of fungal species used for phylogenetic analysis.
Taxon GenBank Acc. No. DNA locus Specimen code Isolation source Country References
Fusarium commune MZ338563.1 tefl-a JFC1 Crocus sativus China [15]
Fusarium annulatum MZ338578.1 tef1-a JFA12 Crocus sativus China [15]
Fusarium nirenbergiae MT814622.1 tef1-a AN1 Crocus sativus China [16]
Fusarium oxysporum MH485044.1 tefl-a CBS 144134 Solanum tuberosum Germany [32]
MH484963.1 tef1-a CBS 221.49 Camellia sinensis Netherlands [32]
MH485034.1 tefl-a CPC 25822 Protea sp. South Africa [32]
Fusarium acuminatum KX702711.1 tef1-a G15SMX1-12-1 Wheat China [33]
JX397865.1 tef1-a CGC:S3BS-10-05 Wheat and barley Canada [29]
KR108750.1 tef1-a SDFAWY137F2 Saposhnikovia divaricata China Direct Submission
PQ492270.1 tefl-a Crocus sativus India Present study
JF496578.1 tef1-a C1RA.007 Barley Spain [34]
JF496579.1 tef1-a C1RA.045 Barley Spain [34]
JF496581.1 tefl-a C3RA.032 Barley Spain [34]
KX752419.1 tef1-a JBL539 - Serbia Unpublished
KP868658.1 tefl-a AAFAWY137A22 Artemisia argyi China Direct Submission
KJ194170.1 tef1-a MP31 Alfa-alfa China Unpublished
Gibberella acuminata EF531698.1 tefl-a F30 Astragalus racemosus USA Unpublished
Fusarium nirenbergiae MT864720.1 p-Tubulin JD1 Crocus sativus China [16]
MT864723.1 p-Tubulin JD2 Crocus sativus China [16]
MT864726.1 p-Tubulin JD3 Crocus sativus China [16]
MT864727.1 p-Tubulin SH1 Crocus sativus China [16]
MT864717.1 p-Tubulin WY5 Crocus sativus China [16]
MT864722.1 p-Tubulin GY6 Crocus sativus China [16]
Fusarium callistephi MH485057.1 p-Tubulin CBS 187.53 Callistephus chinensis Netherlands Direct Submission
Fusarium carminascens MH485116.1 p-Tubulin CPC 25792 Zea mays South Africa [32]
Fusarium contaminatum MH485082.1 p-Tubulin CBS 111552 Pasteurized fruit juice Netherlands [32]
Fusarium acuminatum KJ572784.1 p-Tubulin FA-02622 Ginseng China [35]
KP325410. p-Tubulin M7 Actinidia arguta China [36]
KJ396328.1 p-Tubulin L19 China Unpublished
PQ492271.1 p-Tubulin - Crocus sativus India This study
ON960209.1 p-Tubulin UNIJAG.PL.OP987 Arabidopsis arenosa Poland [31]
0Q433926.1 p-Tubulin SDS15 Divaricate Saposhniovia Root China Direct Submission
0Q433928.1 p-Tubulin SDS3 Divaricate Saposhniovia Root China Direct Submission
Fusarium oxysporum MH485054.1 p-Tubulin CBS 221.49 Camellia sinensis Netherlands [32]
MH485135.1 pB-Tubulin CBS 144134 Solanum tuberosum Germany [32]
Fusarium sp KT268720.1 ITS P1426 Microthlaspi perfoliatum Spain [371
Fusarium tricinctum PQ328656.1 ITS DG4 Angelica sinensis China Unpublished
0Q274939.1 ITS A3MO5 - Iran Unpublished
Fusarium commune MZ313313.1 ITS JFC1 Crocus sativus China [15]
MZ318051.1 ITS SFC20 Crocus sativus China [15]
MZ313312.1 ITS YFC5 Crocus sativus China [15]
Fusarium annulatum MZ313130.1 ITS JFA12 Crocus sativus China [15]
MZ313132.1 ITS WFA10 Crocus sativus China [15]
Fusarium acuminatum KP325408.1 ITS M7 Actinidia arguta China [36]
MK764994.1 ITS Acheng9-2 Alfalfa China Unpublished
KJ001758 ITS 02622 Ginseng China [35]
JX077013.1 ITS NJR101-31 Wetland sediment China [38]
JX114788.1 ITS F12SS1 Crown of Aleppo pine seedling Algeria [39]
JX114785.1 ITS F14SS3 Crown of Aleppo pine seedling Algeria [39]
JX114782.1 ITS F30SS3 Crown of Aleppo pine seedling Algeria [39]
JX114790.1 ITS F25RS3 Crown of Aleppo pine seedling Algeria [39]
PQ319729.1 ITS SKUAST _SC Crocus sativus India Present study

highlighting the genetic separation from the query sequences. Similar
species were grouped in a single clade irrespective of their geographic
origin. The pairwise identity analyses of tefl-a, tub2, and ITS gene se-
quences provided valuable insights into the genetic diversity among the
isolates. The percentage identity ranged from 70 to 100 % for tefl-a,
82-100 % for tub2, and 92-100 % for ITS sequences, highlighting
varying levels of conservation across these loci (Fig. 5). A new fungal
species F. acuminatum was found associated with causing saffron corm
rot in Kashmir valley, and this is the first report of this pathogen from
India.

5. Conclusion

The current study provides comprehensive insights into the etiology
of corm rot disease in saffron (C. sativus L. Kashmirianus) cultivated in
the Kashmir valley, identifying Fusarium acuminatum as the causal agent
for the first time in India. Through a polyphasic approach involving
morpho-cultural characterization, pathogenicity testing, and multigene

sequence analysis, F. acuminatum was confirmed as the pathogen
responsible for this destructive disease. Pathogenicity assays validated
its virulence on saffron plants, fulfilling Koch’s postulates and estab-
lishing its role in disease progression. The study also highlights the ge-
netic distinctiveness of F. acuminatum compared to other Fusarium
species. This research provides a foundation for effective disease man-
agement strategies to mitigate the impact of F. acuminatum induced
saffron corm rot in India.
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Fig. 5. Pairwise identity matrices for (a) tefl, (b) tub2, and (c) ITS gene sequences. Each colored cell represents a pairwise comparison, with percentage identity
ranging from 70 to 100 %, 82-100 %, and 92-100 %, respectively. Analyses were performed using SDT v1.2 (http://web.cbio.uct.ac.za/).
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Abstract

Horticultural crops, including fruits, vegetables, flowers, and herbs, are essential for food security and economic sustain-
ability. Advances in biotechnology, including genetic modification and omics approaches, have significantly improved these
crops'traits. While initial transgenic efforts focused on protein-coding genes, recent research highlights the crucial roles of
non-coding RNAs (ncRNAs) in plant growth, development, and gene regulation. ncRNAs, including microRNAs (miRNAs)
and long non-coding RNAs (IncRNAs), influence key biological processes through transcriptional and post-transcriptional
regulation. This review explores the classification, functions, and regulatory mechanisms of ncRNAs, emphasizing their
potential in enhancing horticultural crop quality. This growing understanding offers promising avenues for enhancing crop
performance and developing new horticultural varieties with improved traits. Additionally, we elucidate the role of ncRNA

databases and predictive bioinformatics tools into modern horticultural crop improvement strategies.

Keywords Horticulture - Non-coding RNAs - MicroRNAs - Gene regulation - Bioinformatics - Crop improvement

Introduction

Horticultural plants, including fruits, ornamental trees, veg-
etables, flowers, herbs, and tea plants, have been developed
to address human needs for food and aesthetic value through
techniques such as hybridization, mutation breeding, and
genetic modification (Bashir et al. 2023; Xiong et al. 2015).
Early transgenic breeding efforts primarily focused on
protein-coding genes associated with specific agricultural
traits(Husaini and Xu 2016a, b, Husaini et al. 2010a, b,
Husaini 2010, Nerkar et al. 2022). Different approaches
were developed for addressing the concerns raised against
transgenic technologies (Brookes and Barfoot 2018; Husaini
et al. 2011; Husaini and Tuteja 2013).However, overexpres-
sion of different protein coding genes remained as a method
of choice for improving horticultural crops(Husaini and Xu
2016a, b; Husaini 2010; Husaini and Abdin 2008). Later, the
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challenges of climate change emerged as a major threat caus-
ing multiple biotic and abiotic stresses, and crops tolerant
against these were developed using modern biotechnologi-
cal and omics- approaches (Campbell et al. 2018; Gil et al.
2019; Husaini and Xu 2016a, b; Husaini et al. 2012; Husaini
and Khurshid 2021). Genetic modification or modulation of
pleiotropic genes is increasingly being explored as a strategy
to develop climate-resilient, nutrient-dense crops suitable for
high-value farms (Husaini 2022; Husaini and Rafiqi 2012).
Apart from the coding regions of the plant genome, the other
prominent targets for the development of better horticultural
crops are non-coding RNAs(ncRNAs).

Non-coding RNAs are acknowledged for their essen-
tial roles in plant growth, development, and environmental
stress responses, operating through both transcriptional
and post-transcriptional mechanisms(Haq et al. 2022;
Yang et al. 2023). Though up to 90% of the eukaryotic
genome is transcribed into RNA, only about 2% of these
RNA molecules encode proteins. Most of these tran-
scripts are non-coding RNAs (ncRNAs) derived from
regions once thought to be inactive or irrelevant, includ-
ing intergenic areas, repetitive sequences, transposons,
and pseudogenes(Zhang et al. 2019).Initially, transcripts
originating from these regions were thought to be mere
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transcriptional noise because they either lacked signifi-
cant protein-coding potential or had poorly conserved
sequences.

While experimental research has provided much insight
into the roles of non-coding RNAs (ncRNAs) in different
biological processes, next-generation sequencing (NGS)
and computational biology plays a crucial role in advanc-
ing this knowledge by predicting possible new interac-
tions between ncRNAs and other molecules (Rincon-
Riveros et al. 2021). Computational predictions provide
a crucial alternative for discovering new insights, creat-
ing a feedback loop where experimental findings enhance
computational models. These models, in turn, suggest
potential interactions that can be tested and validated
experimentally.

Non-coding RNAs (ncRNAs) regulate gene expression
and key physiological processes in plants. Advances in
sequencing and bioinformatics have expanded ncRNA
databases and predictive tools, yet their applications in
horticultural crop improvement remain underexplored.
This review classifies ncRNAs, outlines their regulatory
roles, and summarizes key databases and tools for func-
tional analysis. It further highlights the potential of micro-
RNAs (miRNAs) and long non-coding RNAs (IncRNAs)
in enhancing horticultural crop traits. By integrating bioin-
formatics with functional insights, this study underscores
ncRNAS’ role in advancing horticultural research.

Classification of non-coding RNAs

Since their discovery, non-coding RNAs (ncRNAs) have
been divided into different categories. The major catego-
ries of ncRNA transcripts are housekeeping ncRNAs and
regulatory ncRNAs(Fig. 1)(Yang et al. 2016). Housekeep-
ing ncRNAs play a crucial role in fundamental cellular
and ribosomal processes. This category includes riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs, ranging from
50-200 nucleotides), small nuclear RNAs or spliceosomal
RNAs (snRNAs, typically 50-200 nucleotides), and small
nucleolar RNAs (snoRNAs, around 50-200 nucleotides). On
the other hand, regulatory ncRNAs modulate gene expres-
sion by interacting with mRNAs or other molecules. They
play key roles in controlling developmental processes, cel-
lular responses, and gene silencing. They encompass small
RNAs such as microRNAs (miRNAs, approximately 20-24
nucleotides), which are the most abundant class of small
non-coding RNAs, small interfering RNAs (siRNAs, 20-24
nucleotides), piwi-interacting RNAs (piRNAs, 24-32 nucle-
otides), and long non-coding RNAs (IncRNAs, longer than
200 nucleotides) (Zhao et al. 2022). Regulatory ncRNAs
or ribo-regulators serve as crucial regulatory RNA mol-
ecules transcribed from DNA but not translated into pro-
teins. Additionally, circular RNAs (circRNAs), a distinct
class of endogenous ncRNAs characterized by covalently
closed structures without 5'or 3'ends, are produced through
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Fig.1 The major categories of ncRNAs and their sub-categories:
Housekeeping ncRNAs play a crucial role in fundamental cellular
and ribosomal processes, and include ribosomal RNAs (rRNAs),
transfer RNAs (tRNAs, ranging from 50-200 nucleotides), small
nuclear RNAs or spliceosomal RNAs (snRNAs, typically 50-200
nucleotides), and small nucleolar RNAs (snoRNAs, around 50-200
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nucleotides). The regulatory ncRNAs modulate gene expression by
interacting with mRNAs or other molecules, and encompass micro-
RNAs (miRNAs, approximately 2024 nucleotides), small interfering
RNAs (siRNAs, 20-24 nucleotides), piwi-interacting RNAs (piR-
NAs, 24-32 nucleotides), and long non-coding RNAs (IncRNAs,
longer than 200 nucleotides)
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non-sequential back-end splicing from precursor mRNAs by
RNA polymerase II (Bhogireddy et al. 2021). They are cat-
egorized into exonic, intronic, intergenic, and exon-intronic
circRNAs based on their genomic origin, and play a role in
gene expression regulation by acting as miRNA sponges.

Exploring non-coding RNAs and their
regulatory functions in plants

miRNAs and siRNAs regulate gene expression through vari-
ous mechanisms. These include mRNA cleavage, inhibition
of translation, and suppression of transcription (Wang et al.
2021). Likewise, IncRNAs regulate gene expression through
interactions with proteins and miRNAs. They impact mRNA
stability and translation and can also modify chromatin
structure (Waititu et al. 2020).

Target transcript cleavage by miRNAs and siRNAs

Sequence-specific gene silencing is achieved when miRNAs
or siRNAs bind to complementary regions of target mRNA
molecules, leading to their cleavage (Lam et al. 2015).
Regarding miRNAs, the processing of MIR genes involves
DCL1, HYLI, and the SE complex (Li and Yu 2021). This
processing produces mature miRNA-miRNA duplexes.
These duplexes are then transported to the cytoplasm by
the HASTY protein, where they associate with the RNA-
Induced Silencing Complex (RISC), which includes AGOL.
The RISC-AGO1 complex binds to complementary sites
within the target RNA transcript's sense sequence, leading to
its degradation. Importantly, the antisense strand of miRNAs
remains associated within the RISC complex (Lelandais-
Briere et al. 2010). For siRNAs, one strand is incorporated
into the RISC-AGO1 or AGO7 complex, guiding the cleav-
age of target gene transcripts approximately 10—11 nucle-
otides upstream of the 5'end of the antisense strand (Liu
et al. 2017). Subsequently, the enzyme EXONUCLEASE
4 (XRN4) participates in the degradation of both the 3'and
5'cleaved fragments (Ren et al. 2014). Recent research has
identified the RNA binding and target cleavage functions
of AGO2, AGO4, and AGO10 in plants. These discoveries
highlight the intricate nature of small RNA-mediated gene
silencing processes (Zhu et al. 2011).

Translational suppression by miRNAs and siRNAs

AGO1 and AGO10 facilitate translational inhibition through
imperfect pairing of small RNAs (sRNAs) with target
mRNA in plants (Lee et al. 2018). However, the effectiveness
of this inhibition process depends considerably on the quan-
tity of miRNA binding sites (Cuellar and McManus 2005).
By binding to the target gene's open reading frame (ORF)

or S'untranslated region (UTR), the RISC-AGO1 complex
regulates translation. This binding restricts the recruitment
or mobility of ribosomes. More factors like VARICOSE,
GW-repeat proteins, the microtubule enzyme KATANIN,
and ALTERED MERISTEM PROGRAM 1 influence this
translation inhibition mechanism (Li et al. 2013a, b, ¢). The
mechanisms behind sSRNA-mediated translation repression
and how the repressed target mRNAs escape endonucleo-
Iytic cleavage need further investigation.

DNA methylation directed by miRNAs and siRNAs

The Arabidopsis DCL family consists of multiple copies that
are essential for generating small RNAs (SRNAs) of various
lengths. DCL1 specifically converts partially paired double-
stranded RNA (dsRNA) precursors into mature 21-nucleo-
tide (nt) miRNAs (Pikaard and Scheid 2014). On the con-
trary, 20 to 22 nucleotide siRNAs are produced from entirely
complementary dsRNA precursors via DCL2 and DCLA4.
24 nucleotide siRNAs, often referred to as hc-siRNAs, are
produced by DCL3 and frequently contribute to gene silenc-
ing through the RADM pathway (Creasey et al. 2014). These
hc-siRNAs are produced during the transcription process
from heterochromatic domains, where they lead to cytosine
methylation in the CG, CHG, and CHH sequence contexts
in cis. DCL3-dependent miRNAs bind to AGO4 and form
a complex that methylates histones and cytosines to restrict
gene expression (Ye et al. 2012). In contrast, the de novo
hc-siRNA-induced RdDM process needs the cooperation of
Pol IV and V, DCL, AGO, and RNA-Dependent RNA Poly-
merase (RDR). These elements promote methylation at par-
ticular target sites and transcribe double-stranded precursors.
Systemic silencing is thus caused by methylation of DNA
and lysine at histone H3's ninth site (H3 K9). Transcriptional
gene silencing is achieved through the hc-siRNA/AGO4
RNA-Induced Silencing Complex (RISC), which targets
DNA and H3 K9 methyltransferases to the target sequence.

Gene expression modulation by long non-coding
RNAs

Long non-coding RNAs (IncRNAs) function as intermediar-
ies between RNA molecules and proteins. They play a cru-
cial role in regulating gene expression. Depending on their
interactions, IncRNAs can act as transcriptional activators,
enhancing gene expression, or as repressors, inhibiting it
(Dey et al. 2022). Nevertheless, the exact molecular mecha-
nisms through which they exert these functions in plants
remain partially understood. Plant IncRNAs function in both
cis and trans contexts (Wu et al. 2020). Cis-acting IncR-
NAs function near their sites of synthesis. They act directly
on local nucleotide sequences or chromosomal regions
associated with one or more adjacent genes. Conversely,

@ Springer



80 Page 4 of 46

Functional & Integrative Genomics (2025) 25:80

trans-acting IncRNAs migrate from their point of synthesis
and can impact multiple genes, even across considerable dis-
tances, including those located on different chromosomes.
Furthermore, IncRNAs can also serve as precursors for
small RNAs (sRNAs) (Lambert et al. 2019). Certain IncR-
NAs can form double-stranded RNA duplexes with Natural
Antisense Transcripts (NAT), generating sSRNAs that per-
form regulatory functions. A Natural Antisense Transcript
(NAT) pair was formed between the complementary regions
of the Rab2-like gene and a pentatricopeptide repeat gene.
This process was facilitated by an endogenous siRNA in
Arabidopsis (Liu et al. 2015). Additionally, IncRNAs can
serve as miRNA decoys, binding to miRNAs and preventing
them from interacting with their target mRNAs. This inter-
ference reduces miRNA activity and relieves the repression
of the target gene. For instance, in Arabidopsis experiencing
phosphate deficiency, the IncRNA"Induced by Phosphate
Starvation 1 (IPS1)"was discovered to mimic miRNA399
(Yuan et al. 2016). Moreover, IncRNAs often act through
various mechanisms such as protein—protein interactions or
post-translational modifications or subcellular localization,
and via epigenetic regulatory mechanisms, including meth-
ylation of DNA, histone modification as well as chromatin
remodelling (Matzke and Mosher 2014).

Computational tools for identifying
and analyzing ncRNAs

Over the past twenty years, extensive research has been
devoted to identifying non-coding RNAs (ncRNAs) and
exploring their roles in various cellular processes (Gariki-
pati and Uchida 2021). The introduction of next-generation
sequencing (NGS) has revolutionized our ability to analyze
ncRNA transcriptomes under different conditions. This
advancement has opened new avenues for discovering novel
ncRNAs and detecting changes in their expression levels
(Mubarak and Zahir 2022). Recent advancements in tran-
scriptomics methodologies and computational resources
are significantly improving our ability to identify, classify,
annotate, and analyze non-coding RNAs (ncRNAs). These
developments are vital for the scientific community as they
facilitate the discovery, annotation, archiving, prediction,
and interpretation of ncRNA data (Dindhoria et al. 2022;
Thind et al. 2022). However, details about these sequences
are frequently hidden in supplementary materials associ-
ated with publications or are only indicated by the chro-
mosomal location of the genes that encode them. This can
pose difficulties for biologists and bioinformaticians in effi-
ciently accessing and extracting the relevant data (Burley
et al. 2022). To address this issue, specialized databases
have been developed for various types of non-coding RNAs
(ncRNAs) to extract, abstract, and present this information
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in a consolidated manner online. In 2010, a meeting of
RNA researchers at Hinxton emphasized the swift growth
in ncRNA sequence data and functional insights (Bateman
et al. 2011). They advocated for the creation of a unified
ncRNA sequence database that would harness the expertise
of the RNA research community by integrating information
from various existing ncRNA databases. With the continu-
ous release of genomic information from diverse plant spe-
cies, a strong foundation is being established for the dis-
covery of novel ncRNAs. Additionally, growing knowledge
about the function, structure, and conservation of ncRNAs
is enhancing our ability to distinguish different ncRNA
types. Since their discovery, numerous bioinformatics tools,
including databases and software, have been developed to
study ncRNAs. A significant proportion of these resources
have been introduced in recent years (Tables 1 and 2).

ncRNA databases

ncRNA databases serve as comprehensive repositories that
consolidate diverse types of ncRNA-related data, including
sequence information, regulatory interactions, and expres-
sion profiles. Many of these databases integrate experimen-
tally validated datasets to enhance reliability. For example,
miRbase (Kozomara et al. 2019) systematically curates pub-
lished mature miRNA sequences alongside their precursor
hairpin structures. Likewise, resources such as miRTarBase
(Huang et al. 2020) and NPInter (Teng et al. 2020) document
interactions between ncRNAs and their molecular targets,
supplementing these records with supporting experimen-
tal evidence. Currently, miRNAs, long non-coding RNAs
(IncRNAs), and circular RNAs (circRNAs) are catalogued
across multiple specialized online platforms (Jin et al. 2021)
(Table 1). The rapid advancements in high-throughput
sequencing technologies, combined with the continuous
expansion of genomic datasets, have significantly enriched
these repositories, enabling large-scale comparative analy-
ses of ncRNA evolution. These developments facilitate
the establishment of conserved models for predicting and
functionally characterizing novel ncRNAs. Despite these
advancements, several challenges persist in utilizing these
databases for cross-species investigations. One of the pri-
mary constraints is the difficulty in distinguishing conserved
ncRNAs from species-specific counterparts. Furthermore,
achieving high-confidence functional annotation of novel
ncRNAs remains a considerable challenge, necessitating the
development of more sophisticated computational frame-
works for accurate prediction and validation.

ncRNA prediction tools

The computational prediction of ncRNAs encompasses
both their identification and functional annotation. While
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Table 1 Bioinformatics databases for ncRNA analysis

ncRNA Type Database

Description

Web Address

Reference

IncRNA PLNIncRbase

JustRNA

GreeNC

CANTATAdb 2.0

AlnC

IncRNAdb

NONCODE
CPC

circRNA AtCircDB

CropCircDB

PlantcircBase

o Curated database of experimen-
tally identified plant long non-
coding RNAs (IncRNAs) mir828

e Provides sequences, classifica-
tions, expression profiles, and
detection methods

e Includes predicted functions and
target genes for studying regula-
tory roles

o Offers expression profiles and
network interactions of plant
IncRNAs

e Enables exploration of regulatory
roles and functional associations
in various plant species

o A wiki-based database of plant
non-coding RNAs (ncRNAs)

e Provides curated information
on IncRNAs and other ncRNAs
across plant species

o Covers IncRNAs from 39 plant
species and algae

e Provides annotations, expression
data, and functional predictions

e Focuses on IncRNAs in angio-
sperms

o Offers annotations, expression
patterns, and functional insights

o A database for regulation mRNA
and IncRNAs that have or associ-
ate with biological functions in
eukaryotes

o A database of expression and
biological functions of IncRNAs

e Calculate protein-coding potential
of IncRNAs and other RNAs

o Specialized for circular RNAs
(circRNAS) in Arabidopsis
thaliana

e Provides annotations, expression
profiles, and functional predic-
tions

o Dedicated to circRNAs in crop
plants

e Focuses on their expression pat-
terns and regulatory roles under
abiotic stress

o Database for plant circular RNAs
(circRNAs)

o Integrates high-throughput
sequencing data for annotation

e Provides expression profiling and
functional analysis

o Links circRNAs to miRNA and
RNA-binding protein (RBP)
interactions

e Supports evolutionary studies of
plant circRNAs

http://bioinformatics.ahau.edu.cn/
PLNIncRbase

http://justrna.itps.ncku.edu.tw/

http://greenc.sciencedesigners.com/

http://cantata.amu.edu.pl/
http://yeti.amu.edu.pl/CANTATA/

http://www.nipgr.ac.in/AlnC

http://www.Incrnadb.org/

http://www.noncode.org/
http://cpc2.cbi.pku.edu.cn/

http://genome.sdau.edu.cn/circRNA

http://genome.sdau.edu.cn/crop/
http://deepbiology.cn/crop/

http://ibi.zju.edu.cn/plantcircbase/
index.php

(Xuan et al. 2015)

(Tseng et al. 2023)

(Paytuvi Gallart et al. 2016)

(Szczesniak et al. 2019)

(Singh et al. 2021)

(Amaral et al. 2011)

(Liu et al. 2005)
(Kong et al. 2007)

(Ye etal. 2019)

(Wang et al. 2019)

(Chu et al. 2017)
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Table 1 (continued)

ncRNA Type Database

Description Web Address

Reference

miRNA miRbase

PNRD

miRIAD

MetaMirClust

miRTarBase

PmiREN

Rfam

e Comprehensive database of http://www.mirbase.org/
known microRNA (miRNA)
sequences and annotations
o Includes miRNA identification,
classification, genomic locations,
and target interactions

e Comprehensive database for plant http://structuralbiology.cau.edu.cn/
non-coding RNAs (ncRNAs) PNRD/index.php
e Contains 25,739 entries covering
different ncRNAs
e Includes 11 types of non-coding
RNAs
e Covers 150 plant species
e Provides a user-friendly interface
for easy navigation

e Focuses on intragenic miRNAs http://www.miriad-database.org/
and their host genes

e Provides insights into genomic
organization, regulatory relation-
ships, and functional interactions

e Database for miRNA clusters and http://fgfr.ibms.sinic.aedu.tw/
their conservation across species MetaMirClust

o Offers insights into co-transcrip-
tion, evolutionary relationships,
and regulatory functions

e Collection of experimentally vali- http://mirtarbase.mbc.nctu.edu.tw/
dated miRNA-target interactions

o Provides curated evidence for
functional studies on miRNA-
mediated gene regulation

e Comprehensive plant miRNA http://www.pmiren.com/
database

e Offers curated annotations,
expression profiles, target predic-
tions, and evolutionary insights

e A comprehensive database of http://rfam.xfam.org/
non-coding RNA (ncRNA)
families, including IncRNAs,
miRNAs, riboswitches, and other
structured RNA elements

o Provides multiple sequence
alignments, consensus secondary
structures, and covariance models
for RNA families

o Facilitates the identification and
annotation of ncRNAs across
different species using computa-
tional tools

e Supports comparative genom-
ics and evolutionary studies of
structured RNAs

o Widely used for RNA classifica-
tion and functional predictions in
diverse organisms

(Kozomara and Griffiths-Jones
2014)

(Yi etal. 2015)

(Hinske et al. 2014)

(Chan and Lin 2016)

(Hsu et al. 2010)

(Guo et al. 2020)

(Kalvari et al. 2018)
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Table 1 (continued)

ncRNA Type Database

Description Web Address

Reference

mirPub

PeTMbase

AtmiRNET

PmiRExAt

o A curated database providing
literature-based information on
microRNAs (miRNAs)

e Collects and organizes experi-
mentally validated miRNA-related
publications

o Offers insights into miRNA func-
tions, regulations, and disease
associations

e Facilitates miRNA research by
linking publications to relevant
miRNA annotations and interac-
tions

e Supports researchers in identify-
ing key references for miRNA
functional studies

http://www.microrna.gr/mirpub/

o A specialized database for
plant-encoded transfer-messenger
RNAs (tmRNAs)

e Provides curated information on
tmRNA sequences, structures, and
functional roles in plants

e Supports research on the role of
tmRNAs in ribosome rescue and
stress responses

o Includes comparative analysis
across different plant species

http://petmbase.org/

o A database for Arabidopsis
thaliana microRNA (miRNA)
regulatory networks

e Provides curated miRNA-target
interactions, co-expression data,
and functional annotations

o Supports network-based analysis
of miRNA-mediated gene regula-
tion in Arabidopsis

o Helps researchers explore miRNA
roles in plant growth, develop-
ment, and stress responses

o A plant microRNA expression
atlas providing expression profiles
of miRNAs across various tissues,
developmental stages, and stress
conditions

e Supports comparative analysis
of miRNA expression patterns in
different plant species

e Facilitates functional studies by
linking miRNA expression data
with biological processes and
environmental responses

o A valuable resource for under-
standing the regulatory roles of
miRNAs in plant development
and stress adaptation

http://pmirexat.nabi.res.in/

http://AtmiRNET.itps.ncku.edu.tw/

(Vergoulis et al. 2015)

(Karakiilah et al. 2016)

(Chien et al. 2015)

(Gurjar et al. 2016)
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Table 1 (continued)

ncRNA Type Database

Description Web Address

Reference

PMTED

PASmiR

tasiRNAdb

starBase

o A comprehensive database http://pmted.agrinome.org/
integrating plant microRNAs
(miRNAs) and their target gene
expression profiles

e Provides experimentally validated
miRNA-target interactions in
plants

e Supports comparative analysis of
miRNA-target expression across
different conditions and tissues

o Helps researchers study miRNA-
mediated gene regulation in vari-
ous plant species

o A database focusing on plant http://pcsb.ahau.edu.cn:8080/
miRNAs and associated small PASmiR/
RNAs, providing comprehensive
annotation and interaction data

o Includes experimentally validated
and predicted miRNA-target
interactions across various plant
species

o Offers functional analysis tools
for studying miRNA regulatory
networks in plants

e Supports comparative expression
profiling of miRNAs and small
RNAs under different conditions

(Sun et al. 2013a, b)

(Zhang et al. 2013)

e A database dedicated to trans- http://bioinfo.jit.edu.cn/tasiRNADat (Zhang et al. 2014)

acting small interfering RNAs abase/
(tasiRNAs) in plants

e Provides information on tasiRNA
sequences, biogenesis pathways,
and regulatory functions

o Includes target predictions and
expression profiles across differ-
ent plant species

o Supports research on tasiRNA-
mediated gene silencing and its
role in plant development and
stress responses

e A comprehensive database inte-  http:/starbase.sysu.edu.cn/
grating CLIP-seq, degradome-seq,
and RNA-seq data

o Provides information on miRNA-
target interactions, ceRNA
(competing endogenous RNA)
networks, and RNA-binding
protein (RBP) interactions

e Supports multiple species, includ-
ing plants and animals

e Enables visualization and
functional analysis of miRNA-
mediated gene regulation

(Yang et al. 2011)

@ Springer
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Table 1 (continued)
ncRNA Type Database Description Web Address Reference

RNAcentral

miRNEST

siRNAdb

e Comprehensive Database for non-
coding RNAs

o Integrates data from multiple
expert databases (e.g., miRBase,
Rfam, Ensembl, RefSeq)

e Contains millions of RNA
sequences from various species

o Covers different types of ncR-
NAs, including miRNAs, rRNAs,
IncRNASs, tRNAs, and snoRNAs

o Provides functional annotations
and sequence alignments

e A comprehensive database of
plant and animal microRNAs
(miRNAs)

o Includes both known and pre-
dicted miRNAs along with their
genomic locations and secondary
structures

e Provides expression data, target
predictions, and comparative
evolutionary analysis

e Supports miRNA identification
across multiple species

o A specialized database for small
interfering RNAs (siRNAs) in
plants

e Provides curated annotations
of siRNAs, including their
sequences, origins, and regulatory
roles

e Supports functional analysis of
siRNA-mediated gene silencing
mechanisms

o Helps researchers explore the
involvement of siRNAs in plant
defense, stress responses, and
epigenetic regulation

https://rnacentral.org/

http://mirnest.amu.edu.pl/

http://siRNA.cgb.ki.se

(Bateman et al. 2011)

(Szczesniak et al. 2012)

(Chalk et al. 2005)
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Table 1 (continued)

ncRNA Type Database Description

Web Address Reference

PmiRKB o A specialized plant miRNA data-
base with four major functional
modules:

o SNP module provides insights
into single nucleotide polymor-
phisms (SNPs) within miRNA-
related regions, helping research-
ers study genetic variations
affecting miRNA function

o Pri-miR module focuses on
primary miRNA (pri-miR)
structures, offering valuable
information for understanding
miRNA biogenesis and regulation
in plants

e MiR-Tar module contains data on

miRNA-target interactions, aiding
in the functional annotation of
plant miRNAs and their regula-
tory roles

o Self-reg module analyzes self-
regulatory feedback loops involv-
ing plant miRNAs, contributing
to the understanding of complex
gene regulatory networks

o Dedicated to scaRNAs, a class of
small non-coding RNAs

e Provides sequence data and anno-
tations for scaRNAs

o Includes functional information
related to snRNA modifications

o Supports research on RNA
processing and ribonucleoprotein
biogenesis

scaRNAbase

NPInter e Provides interaction informa-
tion between non-coding RNAs
(ncRNAs) and other biomolecules
(proteins, DNAs, and RNAs)

o Integrates experimentally vali-
dated ncRNA interactions from
published literature

e Covers various ncRNA types,
including miRNAs, IncRNAs,
circRNAs, and snoRNAs

e Supports cross-species interac-
tion analysis to explore conserved
regulatory mechanisms

o Helps researchers study the func-
tional roles of ncRNAs in gene
regulation and disease pathways

http://bis.zju.edu.cn/pmirkb/ (Meng et al. 2010)

http://gene.fudan.edu.cn/snoRN (Xie et al. 2007)

Abase.nsf

http://bigdata.ibp.ac.cn/npinter4/ (Teng et al. 2020)

numerous algorithms have been developed for ncRNA
discovery, relatively few specialize in functional predic-
tion. These tools can be categorized based on their specific
applications (Table 2). A major challenge in the field lies
in accurately identifying novel ncRNAs and their molecu-
lar targets. Recent advancements in predictive methodolo-
gies primarily focus on three key areas: miRNA sequence
and precursor identification (Fei et al. 2021), detection

@ Springer

of ncRNA binding sites on target molecules (Brousse
et al. 2014), and modeling or visualizing secondary and
tertiary RNA structures (Biesiada et al. 2016). Sequence
alignment remains the cornerstone of ncRNA prediction;
however, sequence divergence presents a significant hur-
dle in achieving high accuracy. Evolutionarily conserved
ncRNAs, particularly those governing fundamental devel-
opmental pathways, exhibit strong conservation across
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species (Jarroux et al. 2017). In contrast, recently evolved
ncRNAs often demonstrate species specificity. Moreover,
different ncRNA classes display varying degrees of con-
servation, further complicating cross-species predictions.
Enhancing the precision of ncRNA prediction remains an
ongoing challenge, which could potentially be addressed
through the development of conserved computational
models tailored to specific ncRNA families, leveraging
the rapidly expanding repository of ncRNA sequence and
functional data.

Regulatory roles of ncRNAs in enhancing
quality traits of horticultural crops

Horticulture, one of the oldest and most globally sig-
nificant agricultural practices, encompasses a diverse
range of crops, including fruits, vegetables, ornamental
plants, herbs, and tea trees. Over time, various breeding
strategies-such as hybridization, mutation breeding, and
transgenic approaches have been employed to enhance
desirable traits in these crops. Traditionally, transgenic
breeding primarily targeted protein-coding genes associ-
ated with key agronomic traits. However, recent discover-
ies have revealed that non-coding RNAs (ncRNAs) play
pivotal roles in regulating plant growth, development, and
responses to environmental stimuli at both transcriptional
and post-transcriptional levels. As a result, ncRNAs are
emerging as promising molecular targets for accelerating
the domestication and genetic improvement of horticul-
tural crops.

Although ncRNA discovery and functional charac-
terization have been ongoing for over half a century, their
widespread presence and diverse regulatory roles were not
fully appreciated until the post-genomic era. A surpris-
ing revelation from genome annotations is that protein-
coding sequences occupy only a small fraction (2-25%) of
the genomic landscape. Functional insights into ncRNAs
have been gained through molecular genetic approaches,
including gain-of-function and loss-of-function analyses.
By examining recent advancements in ncRNA research in
horticultural crops, this review aims to provide a founda-
tion for further investigations and practical applications
in the field. It explores critical biological processes such
as pigment biosynthesis, organ size determination, flavor
and texture modulation, secondary metabolite production,
reproductive tissue differentiation, and the intricacies of
fruit ripening across a range of horticultural crops. These
processes, intricately regulated by ncRNAs, are central to
enhancing the qualitative attributes and overall performance
of horticultural crops, offering valuable insights into their
molecular control.

@ Springer

Fruits

The biosynthesis and accumulation of pigments are funda-
mental processes that drive the maturation and ripening of
horticultural crops, contributing significantly to their char-
acteristic color transitions. These pigments not only define
the visual appeal of fruits and vegetables but also serve as
bioactive compounds, enhancing the nutritional and health-
promoting properties of horticultural produce. Pigment
accumulation is largely governed by the progression of rip-
ening stages, making it an essential biochemical marker for
development of horticultural crops, with direct implications
for post-harvest storage and quality management (Kapoor
et al. 2022). Anthocyanins, a prominent class of pigments,
play a key role in determining the coloration of crops and are
primarily regulated by MYB transcription factors. In tomato
(Solanum lycopersicum), silencing of miR858 significantly
upregulates MYB7-like, thereby promoting anthocyanin
accumulation (Jia et al. 2015). Likewise, miR828 nega-
tively regulates anthocyanin biosynthesis under phosphate-
deficient conditions (Xiao-yun et al. 2015). Additionally,
long non-coding natural antisense transcript (IncNAT-ACoS-
AS1) mediates trans-splicing of the PSY1 gene, encoding
phytoene synthase, a key enzyme in carotenoid biosynthesis,
resulting in yellow pigmentation in tomatoes (Xiao et al.
2020) (Table 3, Fig. 2). Beyond their role in color formation,
anthocyanins serve as secondary metabolites, modulating
photosynthesis, filtering UV rays, and enhancing antioxidant
capacity in fruits and vegetables. In Hippophae rhamnoides
(sea buckthorn), LNC1 and LNC2 act as endogenous target
mimics (e€TMs) for miR156a and miR828a, respectively,
modulating the expression of transcription factors SPL9 and
MYB114, which regulate anthocyanin content (Zhang et al.
2018) (Table 3, Fig. 2). Similarly, carotenoids, which deter-
mine the color of leaves, flowers, and fruits, also attract pol-
linators and seed dispersers while offering protection against
photodamage. In sea buckthorn, 61 differentially expressed
IncRNAs were identified, with 23 specifically expressed in
red fruit and 22 in yellow fruit, regulating carotenoid bio-
synthesis via cis- and trans-regulatory mechanisms (Zhang
et al. 2017).

In Morus spp. (mulberry), IncNAT ABCB19 AS, derived
from the ABCB19 gene, modulates miR477-mediated cleav-
age and enhances anthocyanin accumulation (Dong et al.
2021) (Table 3, Fig. 2). The regulation of anthocyanin bio-
synthesis in Malus X domestica, an economically significant
fruit, involves a network of miRNAs, IncRNAs, and tran-
scription factors. Notably, miR828 and TAS4, along with
MYBI, form a feedback loop that modulates anthocyanin
biosynthesis, with miR828 expression increasing during
fruit pigmentation (Zhang et al. 2020a, b, ¢c). A WRKY1-
LNC499-ERF109 cascade also plays a role, with WRKY1
activating LNC499 expression and subsequently enhancing
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ERF109, which promotes anthocyanin biosynthesis during
fruit color development (Ma et al. 2021) (Table 3, Fig. 2).
Moreover, MLNC3.2 and MLNC4.6, as endogenous tar-
get mimics of miR156, prevent cleavage of SPL2-like and
SPL33 transcripts, thus influencing photoinduced anthocya-
nin biosynthesis (Yang et al. 2019a, b). Another important
regulatory pathway, the miR172-AP2-MYB10 module,
controls flavonoid biosynthesis, with miR172 suppressing
AP2 to decrease MYB10 expression, resulting in reduced
anthocyanin content and increased russeting in mature
apples (Ding et al. 2022) (Table 3, Fig. 2). Additionally,
light-induced pigmentation in apples is linked to lignin
metabolism through miR7125, which targets cinnamoyl-
CoA reductase (CCR) and is regulated by MYB16 and
MYBI transcription factors, thereby coordinating anthocya-
nin and lignin production (He et al. 2022). In grape (Vitis
vinifera), overexpression of miR828 in Arabidopsis has been
shown to downregulate MYB113, resulting in lighter leaf
color, suggesting miR828’s role as a negative regulator of
anthocyanin biosynthesis (Chen et al. 2019). Similarly, in
Actinidia arguta (red kiwifruit), miR858 inhibits anthocya-
nin biosynthesis by targeting MYBC1, a gene encoding an
R2R3-type MYB transcription factor, with overexpression
of miR858 leading to reduced anthocyanin accumulation (Li
et al. 2020) (Table 3, Fig. 2).

In the context of horticultural crops, particularly fruits,
the size and development of fruit are essential factors
influencing marketability and consumer preference. In
Malus X domestica, fruit development is regulated by com-
plex genetic interactions, with the AP2 gene playing a cru-
cial role in fruit size determination. The microRNA miR172
modulates fruit size by post-transcriptionally silencing AP2,
and variations in this regulation are influenced by evolu-
tionary adaptations. For instance, a transposon insertion in
MIR172 leads to reduced miR172 accumulation, resulting
in larger fruit due to elevated AP2 expression (Yao et al.
2015) (Table 3, Fig. 2). This highlights the importance of
miRNA regulation in fruit size, with species-specific varia-
tions observed due to evolutionary selection pressures.

In Solanum lycopersicum (tomato), multiple miRNAs
are implicated in fruit initiation and size determination. The
AGO1 s-miR168 interaction plays a critical role in early
fruit development, while miR159 overexpression induces
parthenocarpy by silencing the GAMYB1/2 genes, thereby
affecting fruit initiation and growth (da Silva et al. 2017).
Moreover, the suppression of miR396a/b using the short
tandem target mimic (STTM) strategy upregulates growth-
regulating factors (GRFs), promoting fruit enlargement (Cao
et al. 2016). Conversely, miR171-targeted overexpression of
GRAS24 results in smaller fruit due to altered hormone bal-
ances, particularly gibberellin and auxin, which negatively
affect cell division and expansion (Huang et al. 2017). Addi-
tionally, miR164a has been identified as a key regulator of
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Fig.2 The involvement of various non-coding RNAs (ncRNAs) in
regulating key quality traits in different horticultural crops. The crops
are categorized into fruit crops, vegetable crops, ornamental crops,
plantation crops, and spice crops. Specific ncRNAs associated with
traits such as color, size, ripening, flavor, texture, reproductive tissue

tomato fruit growth, as its silencing negatively affects fruit
size (Gupta et al. 2021). Moreover, the interaction between
AGO1 proteins and miR168 plays a crucial role in regulat-
ing fruit initiation and growth (Xian et al. 2014) (Table 3,
Fig. 2).

In Solanum lycopersicum (tomato), miRNAs play a piv-
otal role in shaping fruit morphology. For example, over-
expression of miR166b results in a"fruit-growing-out-of-
fruit"phenotype, while expressing an miR166-resistant REV
mutant (35S::REVRIis) leads to the formation of ectopic
carpels and fruit fusion. Interestingly, overexpressing REV
alone does not affect fruit morphology, indicating that its
function is largely regulated by miR166 post-transcription-
ally (Hu et al. 2014). Another important miRNA, miR160,
regulates fruit expansion by targeting ARF10 A from the
Aux/TAA gene family. Silencing miR160 in tomato causes
elevated ARF10 A expression, which results in pear-shaped
fruit (Damodharan et al. 2016) (Table 3, Fig. 2).

In Prunus mume (Japanese apricot), IncRNAs regulate
pistil number, with differential expression of known and
novel IncRNAs between cultivars leading to changes in
fruit morphology and interactions with miRNAs like ppe-
miR172 d and ppe-miR160a/b (Wu et al. 2019a). miRNAs
and IncRNAs influence the flavor and texture of fruits,
key factors in edible quality. In Fragaria ananassa (straw-
berry), miR399 enhances sugar content, boosting fructose,
glucose, and soluble solids, which improves fruit quality
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development, plant growth, and secondary metabolite production are
highlighted. Experimentally validated targets and transcription factors
interacting with these ncRNAs are also indicated, showcasing their
regulatory influence on plant development and quality enhancement

(He et al. 2022, Wang et al. 2017) (Table 3, Fig. 2). In
Pyrus bretschneideri (Asian pear), miR397a overexpres-
sion reduces lignin and stone cell formation, improving
taste (Xue et al. 2019). In Malus domestica (Philippot
et al. 2024), miR7125 targets the CCR gene to balance
lignin and anthocyanin levels, affecting fruit quality(Hu
et al. 2021). These molecular mechanisms play a signifi-
cant role in enhancing the edible quality of fruits.

Initial insights into miRNA involvement in ripening
emerged from tomato (Solanum lycopersicum), where
miR156 and miR172 negatively regulate SPL-CNR and
AP2a, key transcription factors essential for ripening (Chen
et al. 2015; Karlova et al. 2013). Similarly, miR157 over-
expression delays ripening by targeting SPL-CNR (Chung
et al. 2020), whereas miR1917 enhances ethylene response
and accelerates ripening by targeting CTR4 spliced vari-
ants (Wang et al. 2018) (Table 3, Fig. 2). In Cucumis melo,
miR393 overexpression delays ripening by repressing the
auxin receptor gene AFB2(Bai et al. 2020). In Fragaria
ananassa, miR397 cleaves FRILAIR lincRNA transcripts,
with FRILAIR overexpression accelerating ripening (Tang
et al. 2021). miRNAs influence fruit flavor and texture,
key determinants of edible quality. In Fragaria ananassa,
miR399 expression is linked to sugar content, with miR399a
overexpression significantly increasing fructose, glucose,
and soluble solids, thereby enhancing fruit quality (He et al.
2022, Wang et al. 2017) (Table 3, Fig. 2).

@ Springer
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Long non-coding RNAs (IncRNAs) are also crucial
in ripening regulation. In tomato, IncRNAs such as
IncRNA2155 act as competing endogenous RNAs (ceR-
NAs) for miRNAs, affecting the expression of genes
involved in ethylene and carotenoid pathways, which are
key to ripening. The RIPENING INHIBITOR (RIN) tar-
gets IncRNA2155, and its knockout delays ripening (Yu
et al. 2019a, b). Furthermore, IncRNA ACoS-ASI1 regu-
lates carotenoid biosynthesis, influencing fruit color dur-
ing ripening (Xiao et al. 2020) (Table 3, Fig. 2). Together,
miRNAs and IncRNAs coordinate the complex molecular
networks that drive fruit ripening.

Reproductive tissue development is a key process in
the life cycle of fruit-bearing plants, directly influencing
their reproduction and yield. In tomatoes (Solanum lyco-
persicum), 62% of identified IncRNAs in the Heinz 1706
variety and 44% in S. pimpinellifolium LA1589 exhibit
reproductive tissue specificity, playing important roles in
floral organogenesis and reproductive tissue development
(Wang et al. 2016). Additionally, a comprehensive study
in tomato identified 10,919 IncRNAs across leaves, flow-
ers, and roots, with many contributing to floral organo-
genesis (Yang et al. 2019a, b). In mulberry (Morus alba),
1,133 IncRNAs demonstrate tissue-specific expression,
some of which are involved in floral organ formation
(Song et al. 2016) (Table 3, Fig. 2).

Other metabolic processes, such as post-harvest disor-
ders and secondary metabolite production, play a crucial
role in fruit quality and market value. In navel oranges,
granulation, a disorder affecting fruit from the stem,
leads to reduced sugar and organic acid content. Tran-
scriptomic analysis identified 486 ncRNAs involved in
granulation, regulating genes related to cell wall metabo-
lism, cellulose biosynthesis, and enzyme activity (Yao
et al., 2020). In Pyrus pyrifolia (Asian pear), the ncRNA
Pp-miRn182, derived from IncRNA PpL-T31511, regu-
lates type 2 C protein phosphatase 1 (PP2 C1), playing
a key role in hydrogen cyanide-induced endodormancy
release (Li et al. 2021) (Table 3, Fig. 2).Browning, a
common post-harvest issue, affects the appearance and
storage of fruits. Analysis of enzymatic browning in sand
pear identified 254 ncRNAs, including PB.15038 and
PB.156.1, which regulate genes encoding peroxidase
(POD), polyphenol oxidase, and other enzymes (Fan
et al. 2021a, b).Secondary metabolites like vitamin C,
citric acid, flavonoids, and stress-responsive terpenoids
are essential for fruit quality. In lemon, 11,814 ncRNAs
were identified, 113 of which were linked to terpenoid
metabolism, while in peach, 575 IncRNAs were associ-
ated with flavonoid biosynthesis and aroma compound
accumulation (Bordoloi et al. 2022) (Zhou et al. 2022)
(Table 3, Fig. 2).

@ Springer

Vegetables

The biosynthesis and accumulation of pigments play a
critical role in the maturation and ripening of vegetables,
contributing to their characteristic color transitions and
influencing their nutritional and health-promoting prop-
erties. Pigment accumulation is predominantly regulated
by the progression of ripening stages and is crucial for
post-harvest storage and quality management. Color in
vegetables is primarily determined by the accumulation
of anthocyanins, carotenoids, and other pigments. In Cap-
sicum annuum (bell pepper), 2,505 IncRNAs have been
identified, with 1,066 differentially expressed during fruit
development, many of which regulate carotenoid biosyn-
thesis by targeting pigment-related genes through cis or
trans interactions (Ou et al. 2017) (Table 3, Fig. 2).

In leafy vegetables like Lactuca sativa (lettuce),
miRNA-mediated regulation plays a crucial role in deter-
mining leaf and achene size. Overexpression of miR408
enhances both traits by downregulating copper-related
target genes, while miR396a overexpression negatively
impacts leaf expansion through suppression of GRF5, a
critical gene for plant growth and development (Zhang
et al. 2021) (Table 3, Fig. 2). Furthermore, by concentrat-
ing on GRAS family members (SCL6/27), overexpression
of miR171b in Brassica oleracea (broccoli) enhances chlo-
rophyll levels in the leaves (Li et al. 2018). Similarly, broc-
coli miR390a ectopic expression in Arabidopsis stimulates
the development of lateral organs and increases biomass
(He et al. 2020) These studies highlight the significant role
of miRNAs and IncRNAs in controlling the size and devel-
opment of key vegetable crops, influencing their growth
and productivity. Studies on potato sprouting have revealed
that 723 IncRNAs show significant expression changes as
tubers transition from dormancy to sprouting, influencing
cellular and metabolic processes in apical buds. Notably,
the IncRNA StFLORE and StCDF1 are involved in tuber
development and drought response(Ramirez Gonzales
et al. 2021). In Capsicum chinense, transcriptome analysis
identified 2,525 IncRNAs, 47 miRNAs, and 71 circRNAs,
with downregulation of miR156, miR169, and miR369
indicating their role in regulating growth vigor in hybrid
peppers (Shu et al. 2021) (Table 3, Fig. 2).

In vegetables, miRNA-mediated regulation plays a cru-
cial role in determining morphological traits. In Brassica
rapa (Chinese cabbage), overexpression of MIR319a alters
leaf architecture by suppressing TCP4, resulting in wavy
leaf margins and altered leafy heads (Mao et al. 2014).
Similarly, MIR166 g overexpression affects leaf curva-
ture, further influencing vegetable shape (Ren et al. 2018).
Additionally, miR164 targets NAC transcription factors
involved in ethylene-induced leaf senescence, suggesting
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a potential strategy for improving leafy vegetable quality
(Li et al. 2013a, b, c¢) (Table 3, Fig. 2).

Vernalization, the process by which prolonged cold
exposure induces flowering, is a critical requirement for the
flowering of several crops. In Beta vulgaris, three long non-
coding RNAs (IncRNAs)-GL15X1, AGL15X2, and CAULI-
FLOWERA have been identified as key mediators of the ver-
nalization response, regulating the timing of flowering under
cold conditions (Liang et al. 2017). Additionally, IncRNAs
are involved in the regulation of pollen development and
fertility. In Brassica campestris, the pollen-specific IncRNA
BcMF1 is essential for efficient pollen germination and tube
elongation. Knockdown of BcMF1 leads to abnormalities in
pollen development, delayed tapetal degradation, and pollen
atrophy, highlighting its crucial role in reproductive success
(Song et al. 2013) (Table 3, Fig. 2).

Ornamental plants

Ornamental plants, renowned for their aesthetic appeal,
exhibit intricate mechanisms of pigment biosynthesis and
accumulation, which are pivotal in determining their char-
acteristic coloration. Pigments such as anthocyanins, carot-
enoids, and flavonoids play key roles in this process, with
regulation occurring through complex networks of miRNAs,
long non-coding RNAs (IncRNAs), and transcription fac-
tors. In Ginkgo biloba, a species noted for its golden autumn
foliage, IncRNAs and transcription factors are involved in
the regulation of leaf pigmentation, with pathways linked to
chloroplast thylakoid membranes and photosynthesis playing
a crucial role (Wu et al. 2019a, b) (Table 3, Fig. 2).

In ornamental plants, miRNAs and IncRNAs play a key
role in shaping floral morphology. In Liriodendron chinense,
a tree valued for its ornamental leaves and tulip-like flow-
ers, miRNA-IncRNA-transcription factor networks regu-
late phenylpropanoid metabolism, affecting flower and leaf
development. Key regulators identified include Ich-Inc7374-
miR 156 h and Ich-Inc7374-miR156j, which influence sta-
men and pistil development, respectively (Tu et al. 2022). In
Rosa hybrida, ethylene regulates RANAC100 expression via
miR 164, influencing petal size. Silencing NAC100 enhances
petal cell expansion, leading to larger petals, while its over-
expression results in smaller petals (Pei et al. 2013) (Table 3,
Fig. 2).

In Rosa hybrida (rose), long non-coding RNAs (IncR-
NAs) play a pivotal role in regulating floral scent production,
with differential expression of 425 IncRNAs identified dur-
ing flowering stages. These IncRNAs target genes involved
in scent synthesis, offering insights into the genetic control
of fragrance (Shi et al. 2022). Similarly, in Jasminum sam-
bac (jasmine), IncRNAs influence the production of floral
scents, with differentially expressed IncRNAs associated
with terpenoid and phenylpropanoid biosynthesis pathways

(Lu et al. 2023) (Table 3, Fig. 2). These studies underscore
the critical role of IncRNAs and miRNAs in the size, scent,
and color of ornamental plants, providing valuable insights
for breeding and horticultural improvements.

Ipomoea nil, known for its diverse flower colors, has been
studied for its IncRNA profiles. A recent study using whole
transcriptome RNA sequencing identified 11,203 IncRNAs,
including 961 known and 10,242 novel IncRNAs in /. nil.
These findings contribute to understanding the genetic regu-
lation of flower color and development (Zhou et al. 2023).
In Cymbidium ensifolium, a miR172-AP2-like module gov-
erns petal formation, contributing to multi-tepal flowers
(Yang et al. 2015) (Table 3, Fig. 2). Transcriptome analysis
of multi-tepal orchids revealed miR156-SPL and miR167-
ARF modules involved in reproductive organ development,
as well as the miR319-TCP4-miR396-GRF cascade regu-
lating cell proliferation (Yang et al. 2017). In Chrysanthe-
mum indicum, miR396a targets GRF1 and GRF5, affecting
internode elongation and epidermal hair density (Liu et al.
2021) (Table 3, Fig. 2). Camellia oleifera, an evergreen
shrub from the Theaceae family, is a key oil source used
in various products. Despite prolific flowering, seed pro-
duction remains low, with limited understanding of flower
bud development. A study on gene expression, long non-
coding RNA (IncRNA), and miRNA during anther devel-
opment revealed 18,393 transcripts, 414 IncRNAs, and 372
miRNAs. Differential expression analysis identified 5,324
genes, 115 IncRNAs, and 44 miRNAs. Gene ontology
showed IncRNA targets in anther development processes,
while miRNA targets were linked to microspore develop-
ment. Interaction networks identified key miRNA families
and IncRNAs involved in pollen wall formation (Kong et al.
2022). The timing and duration of flowering are essential
for plant reproduction and their commercial value, with
miRNA-target modules playing critical roles in floral tran-
sition. In Sinningia speciosa, miR159 delays flowering by
targeting GAMYB, whereas miR172 promotes flowering
by suppressing AP2 (Li et al. 2013a, b, ¢) In Chrysanthe-
mum morifolium, silencing NF-YB8 induces early flower-
ing, which can be reversed by miR156 overexpression (Wei
et al. 2017). Similarly, in Petunia hybrida, overexpression of
miR156/157 delays flowering through the targeting of SPLs
(Zhou et al. 2021) (Table 3, Fig. 2).

Plantation crops

Tea is a widely consumed non-alcoholic beverage, valued for
its secondary metabolites (SMs) such as catechins, theanine,
caffeine, and volatile compounds, which contribute to its
flavor and health benefits (Jia et al., 2021). Several ncRNA-
mediated regulatory pathways influence SM biosynthesis in
tea leaves. miRNAs, including miR 156, miR164a, miR166a,
miR167 d, and miR396 d, regulate catechin accumulation
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by targeting key transcription factors like SBP3, NAC, HD-
Z1P4, ARF, and GRFs (Zhao et al. 2020)These regulatory
modules potentially interact with phytohormones such as
TIAA, JA, ABA, ZA, and SA, although direct evidence is
lacking. Additionally, miR169 has been experimentally
validated to regulate caffeine and theanine synthesis by
targeting NF-YA, with its expression positively correlating
with these metabolites (Zhao et al. 2020) (Table 3, Fig. 2).
Long non-coding RNAs (IncRNAs) also play a crucial role
in tea plant metabolism. Transcriptome analyses identified
32,036 IncRNAs across different developmental stages and
tissue types, with some specifically linked to flavonoid and
terpenoid biosynthesis. Notably, LTCONS_00026271 and
LTCONS_00020084 function as endogenous target mimics
(eTMs) for novel_miR44 and miR169 d- 5p_1, respectively,
promoting volatile terpenoid accumulation in withered tea
leaves (Zhu et al. 2019). These findings highlight the com-
plex genetic regulation of tea quality traits, offering poten-
tial targets for breeding and metabolic engineering (Table 3,
Fig. 2).

Spice crops

MicroRNAs (miRNAs) play a crucial role in regulating
secondary metabolite biosynthesis, although their precise
involvement remains largely unexplored. In Nigella sativa
(black cumin), a medicinal plant with limited genomic data,
next-generation sequencing (NGS) was employed to profile
miRNAs and investigate their role in secondary metabolism.
A total of 240 conserved and 34 novel miRNAs were iden-
tified, targeting 6,083 potential genes involved in key bio-
synthetic pathways, including terpenoid, phenylpropanoid,
flavonoid, and carotenoid metabolism. JPCR validation con-
firmed the expression patterns of selected miRNAs, reinforc-
ing their regulatory function. This study provides valuable
insights into miRNA-mediated control of secondary metabo-
lism and potential strategies for metabolite enhancement in
N. sativa (Uriostegui-Pena et al. 2024) (Table 3, Fig. 2).
Gingerols, the primary bioactive compounds in ginger
(Zingiber officinale), are known for their significant health
benefits. A combined metabolomic and transcriptomic
analysis of three major ginger cultivars in China identified
744 metabolites, including 21 gingerol derivatives, with
shogaol and gingerol showing significant accumulation.
Transcriptomic analysis further revealed 16,346 long non-
coding RNAs (IncRNAs), with differentially expressed
IncRNAs linked to secondary metabolism and hormone
responses. Correlation analysis identified key gingerol
biosynthesis enzyme genes (GBEGs) alongside transcrip-
tion factors such as MYB1, ERF100, and WRKY40, as
well as 1,184 potential regulatory IncRNAs. Additionally,
protein—protein interaction analysis suggested that MYB4,
MYB43, and WRKY70 interact with essential GBEGs,
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including PALI, PAL2, PAL3, and 4 CL- 4(Table 3, Fig. 2).
This study proposed a comprehensive regulatory network
involving IncRNAs, transcription factors, and GBEGs
in gingerol biosynthesis, offering novel insights into the
genetic and molecular mechanisms governing gingerol
metabolism (Zhang et al. 2023).

Conclusion

While significant advances have been made in understand-
ing the roles of non-coding RNAs (ncRNAs) in plants,
several research opportunities remain. ncRNAs regulate
essential processes in plants, including ripening, growth,
pigmentation, secondary metabolite biosynthesis, and
reproductive development in crops such as fruits, vegeta-
bles, and plantation crops. Advances in transcriptomic and
metabolomic integration have deepened our understand-
ing of ncRNA-mediated regulatory networks. However,
cross-tissue and developmental stage analyses should be
prioritized to better understand how these RNAs coordi-
nate gene expression across different plant organs. In met-
abolic engineering, ncRNAs offer potential for enhancing
the nutritional value, flavor, and health properties of crops.

The conservation of ncRNAs across species highlights
the need for extensive species-specific data collection and
improved prediction models. Further research is needed in
plantation crops, such as tea, to explore the regulation of
secondary metabolites like catechins and theanine, and in
vegetable ripening to improve post-harvest quality. ncR-
NAs may also be harnessed for ornamental plant breeding,
regulating traits like color and scent. Further improvement
in the computational tools, including RNA sequencing,
bioinformatics pipelines, and machine learning algo-
rithms, can be pivotal in uncovering the functional roles
of miRNAs and IncRNAs. Furthermore, developing user-
friendly tools for both Linux and Windows systems will
enhance research accessibility. RNA interference technolo-
gies and genome editing tools like CRISPR-Cas provide
promising avenues for utilizing ncRNAs to improve crop
yield and quality.
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Abstract

Background Cold stress is an upcoming challenge for rice (Oryza sativa L.) cultivation, especially at the seedling establish-
ment stage. It causes serious constraints in its production and productivity as it is a thermophilic cereal crop. North-western
Himalayan region has a rich repository of temperate rice genotypes, and there is a need to identify cold-tolerant rice varieties
from these available genetic resources.

Methods and results The present study screened 90 rice accessions (indica and japonica) grown in the high-altitude regions
at 2200 m amsl for cold tolerance (5 °C) at the seedling stage, and found 14 highly cold-tolerant accessions. Almost eighty
per cent of the indica types clustered into cold-sensitive class. One cold-tolerant japonica (GS-74) accession and one cold-
susceptible (SR-4) accession were used to compare their biochemical and gene expression response during cold stress and
after recovery. A wide range of differences was noticed at different time points in the accumulation of ROS scavengers, osmo-
protectants and antioxidant enzymes, with significant differences between the contrasting genotypes. Similarly, gene expres-
sion of five transcription factors OsMYB4, OsAP37, OsDREB1A, OsDREB 1B and OsDREB1D revealed their role in cold
responsiveness at the seedling stage, critically modulating the cold-induced osmoprotectant-mediated tolerance mechanism.
Conclusion This is the first study that explored the high-altitude Himalayan rice germplasm for cold tolerance at the critical
S3 seedling stage under controlled conditions. It demonstrated that the upregulation of OsDREB1A, OsDREB1B, OsMYB4
and OsAP37 transcription factors modulates cold stress response in rice via a complex mechanism involving ROS scavengers
and osmoprotectants.

Keywords Oryza sativa L. - Cold stress - Himalayas - Antioxidants - Gene expression

Introduction

Rice (Oryza sativa L.) is the second most-consumed cereal
in the world, with over 3.6 billion people around the globe
(50% population) taking it as an essential meal in their diets.
Over 400 million people worldwide are associated with rice
production, and Asia produces more than 90% of the world’s
rice [1]. Since rice is a thermophilic crop and a sensitive
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agro-ecosystem, cold stress affects it adversely [2]. Due to
cold stress, about 15 million hectares of land worldwide is
unsuitable for rice cultivation [3, 4]. The optimum seed ger-
mination temperature for rice is 25 °C, while temperatures
below 15 °C cause a severe decrease in germination, vigour
and seedling emergence, which further results in delayed
initial growth and seedling establishment, yellowing of the
leaves, overall growth inhibition, late and limited tillering
as well as high seedling mortality [5]. With a drop in tem-
perature, grain loss of approximately 26% ranging from 0.5
to 2.5 t/ha has been recorded [6, 7].

Plants respond to abiotic stresses at the molecular level
through signal perception, transduction, gene expression
alterations, and metabolic changes [8]. The common effects
caused by stress are increased production of intracellular
Reactive-Oxygen Species (ROS), including superoxide
anion (O,e—), hydroxyl radical (¢OH), as well as non-radical
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molecules like hydrogen peroxide (H,0,), singlet oxygen
(102) [9, 10]. ROS are major signalling molecules that main-
tain the plant’s normal growth and responses to stress. If
left unchecked, ROS levels in cells rise, causing irreversible
damage to membranes (lipid peroxidation), DNA, RNA, and
proteins, altering tissue and organ development, stomatal
activity, and eventually programmed cell death (PCD) [11].
A network of transcription factors and regulatory genes that
modulate defence enzymes, proteins, and pathways is essen-
tial for plants’ tolerance to abiotic stresses [12—16]. Elucidat-
ing these molecular mechanisms of specific gene activation/
repression through transcription factors is essential for crop
improvement [17, 18].

Based on the available literature, we chose five stress-
responsive transcription factors OsMYB4, AP37, DREB1A,
DREBI1B, and DREB1D for the present study. Except AP37,
the rest of the transcription factors are known for their role
in drought and salt stress [19, 20]. Anther-specific aspartic
protease (AP37), though involved in tapetal programmed
cell death (PCD), has also been implicated in drought toler-
ance [21]. While there is a limited understanding about the
involvement of these transcription factors in cold tolerance
in rice, we aimed to investigate their role in the metabolic
adjustments that aid rice plants in responding to cold stress.
Furthermore, the Himalayan rice germplasm accessions are
assumed to possess cold tolerance, but this claim needed val-
idation under controlled conditions [2, 22, 23]. The present
study repudiated the assumption and fished out 14 cold-tol-
erant rice genotypes, which would help breed cold-tolerant
rice varieties. One cold-tolerant japonica accession (GS-74)
and one cold-susceptible indica accession (SR-4) were com-
pared under cold stress and post-stress recovery phase for
gene expression of transcription factors Oryza sativa myelo-
blastosis transcription factor 4 (OsMYB4), Aspartyl protease
37 (AP37), Dehydration-responsive element-binding protein
1 (DREB1A, DREB1B, DREB1D), and biochemical profiles
of important metabolites as well as phenotypic characters
to advance our understanding into their role in cold-stress.

Materials and methods
Planting material

Over one hundred rice accessions were collected from
high-altitude areas of the Western Himalayas (30.25-35.20
N latitude and 74-75.25 E longitude), primarily landraces
cultivated at 2200 m above mean sea level (amsl) or higher.
These were purified for five years at the Mountain Research
Centre for Field Crops, Khudwani, India, and genetic sta-
bility and diversity were determined using Distinctness,
Uniformity, and Stability (DUS) descriptors of the Inter-
national Rice Research Institute [22, 23]. At a temperature

@ Springer

of 30 °C and relative humidity of 60-80%, ninety different
rice accessions from the indica and japonica ecotypes were
germinated in petri dishes within a seed germinator. Seeds
were then sown in triplicates in plastic pots filled with clay
soil (0.5 kg each) and kept in a walk-in plant growth cham-
ber under controlled conditions (16 °C, relative humidity
60-80%, photoperiod 16/8 h day/night, and light intensity
3000 Im/m?). Two-week-old seedlings were transplanted into
pots (one in each pot) containing a 2:1:1 mixture of clay,
sand, and FYM (5 pots for each accession) and grown in a
walk-in plant growth chamber at a temperature of 25 +2 °C
and relative humidity of 60%.

Screening for cold tolerance

Twenty-day-old seedlings were subjected to cold stress at
5 °C for seven days (Fig. 1) and were scored on LD Scale of
0-9 as per the Standard Evaluation System (SES) for rice
[24-26]. The screening of the entire germplasm set was
repeated twice, and the highest score (9) was assigned to
accessions that resulted in the death of the largest number
of seedlings (highly susceptible) and the lowest score (0) to
those that exhibited no damage to the leaves/plants (strongly
resistant) (Table 1S).

Gene expression analysis
Sample collection

The selected resistant (R) and susceptible (S) rice accessions
were grown in a plant growth chamber at 25 °C and relative
humidity of 60-80% till the seedling (S1) stage. Cold stress
(5 °C) was given to twenty-day-old rice seedlings for 24 h,
and the leaf samples (200 mg) were collected at five differ-
ent time points as per the following details: 0 h before cold
stress (TO), 2 h (T1), 6 h (T2), 24 h during cold stress (T3),
and 24 h after stress recovery at 25 °C (T4).

The samples were immediately immersed in RNA later
(Sigma Aldrich), and stored in 2 ml microfuge tubes (Tar-
son) at — 80 °C for expression analysis.

RNA extraction:

RNA was extracted from leaf samples according to the
manufacturer’s instructions using Trizol reagent (Genetix
Biotech.). The quality and quantity of RNA were deter-
mined using agarose-formaldehyde gel electrophoresis
and spectrophotometry. Thermo Scientific US’s Revert
Aid first-strand cDNA synthesis kit was used to synthe-
size first-strand cDNA. The real-time PCR reactions were
performed with a CFX96 Real-Time PCR detection sys-
tem (Bio-Rad) in 96 well plates in triplicates using SYBR
Green master mix (Bio-Rad Laboratories) with actin gene
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Fig.1 Twenty day old seedlings of rice genotypes subjected to
cold stress treatment at 5 °C for 7 days: a Resistant genotypes (GS-
74, GS-51, GS-34, GS-37, GS-49, GS-88) showing no symptoms
of stress; b Moderately resistant genotypes (Jehlum, Mushk budji,
GS-61, Kamad, K-78) with almost half seedlings dry and having
turned pale yellow; ¢ Susceptible genotypes (IR-42, PS-3, SR-4,

as endogenous control [27]. The amplification was carried
at 95 °C for 2 min incubation and 39 cycles of 95 °C for
30 s, 95 °C for 5 s, varied amplification temperatures for
different primers (58 °C for OSMYB4, 57.5 °C for AP37,
57 °C for DREB1A, 55.5 °C for DREB1B and 59 °C for
DREBI1D), followed by final extension of 72 °C for 30 s.
The supporting table (Table 2S) shows the primer details.
The relative expression of each sample was calculated
using the AACT method [28].

Biochemical analysis

As detailed above, leaf samples collected at five different
time points were dipped in liquid N, for 30 s and imme-
diately stored in a deep freezer at — 80 °C. The samples
were analyzed for osmoprotectants, viz. free proline [29],
glycine betaine [30], sucrose [31], glucose [32]. Antioxi-
dant enzyme activities were estimated for SOD [33, 34],
CAT [35], APOD [36], Glutathione reductase [37]. The
total antioxidant activity was determined by the Phospho-
molybdenum method [38]. Ascorbate and Glutathione con-
tents were estimated as described by [39, 40], respectively.

SR-3, SR-2) with maximum seedlings dead and dehydrated; d Geno-
types after cold stress- resistant (left two), moderately tolerant (cen-
tral two) and susceptible (left two); e Cold susceptible SR-4 (Lt) and
cold tolerant GS-74 (Rt) genotypes selected for molecular and bio-
chemical studies

Statistical analysis

The screening of tolerant and susceptible accessions was
done using a completely randomized design (CRD), and
analyzed by ANOVA using Graphpad Prism and Opstat
softwares [41, 42]. For biochemical analyses, the experi-
ment was laid in CRD with five levels of treatment. The
data were interpreted according to two-way ANOVA using
CPCS1 statistical software, Dunn-Sidak and Tukey tests
for pairwise comparisons using Graphpad Prism [43, 44].
Each treatment had at least three replicates for estimating
biochemical parameters and ten for estimating phenotypic
characters. The data are presented as mean + SE in figures,
and the number of biological replicates is mentioned under
each figure.

Results and discussion

Rice is an important cereal crop and is consumed by over
half of the world’s population. The current study screened
ninety Himalayan rice accessions for cold tolerance
(Fig. 1S), and classified them into different categories of
cold stress tolerance (Fig. 2S). The present study highlights
several critical aspects of subcellular activities that occur in
rice seedlings at S3 stage under severe cold stress of 5 °C.
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Rice seedlings responded to cold stress by accumulating
osmolytes like proline, glycine betaine, and soluble sugars,
which are known to activate defence-related genes, lower
the cellular water potential, maintain turgor high pressure
sufficient for growth, and protect cellular membranes from
desiccation and cold damage. Cold stress caused ROS eleva-
tion in the rice seedlings. Since superoxide radicals are toxic
to cells, antioxidant machinery was activated to reduce H,0,
levels and protect the plants from cold-induced ROS produc-
tion [45-47].

Proline and glycine-betaine (GB) content

In the present study, proline (proteinogenic amino acid)
content of the resistant genotype increased significantly
for 24 h of chilling cycle compared to the susceptible
genotype and decreased significantly post-24 h of chilling
(Table 3S; Fig. 2a). Similar proline content variations were
observed in earlier studies on rice plants [48, 49]. Once
plants are exposed to stress, it is well known that they
accumulate high levels of proline in the cytoplasm and
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Fig.2 Osmolyte and sugar contents evaluated in 2 distinct rice gen-
otypes under cold stress. The selected resistant and susceptible rice
genotypes subjected to cold stress (4 °C) at S3 stage in plant growth
chamber and the leaf sample at O h, 2 h, 6 h, 24 h, and P24 (24 h
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chloroplast [50, 51]. The role of proline in singlet oxygen
quenching, ROS scavenging, and sub-cellular structure
stabilization makes it important for cold tolerance [52, 53].

Plants increase their cell osmolality under abiotic stress,
and Glycine-betaine (GB), a quaternary amine, plays an
important role in the process. In the present study, gly-
cine betaine content followed a similar trend as proline.
GB content increased sharply due to cold stress in the
susceptible genotype (SR-4), reaching a maximum value
at 24 h (Table 1; Fig. 2b) [54, 55], but it was significantly
lower than in the tolerant genotype (GS-74). Both gen-
otypes showed a decline in its concentration during the
post-chilling recovery phase. In a similar study, glycine
betaine content in rice genotypes increased five-fold under
cold stress [56]. The interactions based on Sidak’s mul-
tiple comparisons test between treatments and genotypes
imply that proline and glycine-betaine levels vary between
the contrasting genotypes and play a significant role in
tolerating cold stress (Table 3S).
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«Fig.3 Antioxidant content evaluated in 2 distinct rice genotypes
under cold stress. The selected resistant and susceptible rice geno-
types subjected to cold stress (4 °C) at S3 stage in plant growth cham-
ber and the leaf sample at O h, 2 h, 6 h, 24 h, and P24 (24 h recov-
ery post chilling) from both genotypes (highly resistant and highly
susceptible) showed differential response in: a Catalase, b SOD, ¢
Ascorbate, d APX (Ascorbate Peroxidase), e Glutathione content, f
Glutathione reductase, g Total anti-oxidant activity (TAA)

Soluble sugars

In the present study, the glucose and sucrose content was
significantly higher in the resistant genotype than in the sus-
ceptible genotype. The average glucose content was nearly
3 times that of the tolerant genotype (15.4 mg/g dwt) com-
pared to the susceptible genotype (4.40 mg/g dwt) (Table 1)
(Fig. 2c). Up to 24 h under cold stress, both susceptible
and tolerant genotypes showed a similar increasing trend
in sucrose content (Table 1), which is consistent with ear-
lier studies [57, 58]. However, there was a decline in the
post-chilling recovery phase. Notably, the tolerant genotype
maintained a higher sucrose concentration at all time points
than the susceptible genotype (Fig. 2d).

Soluble sugars help plants withstand stress [59]. The pre-
sent study demonstrated that sucrose and glucose contents
were higher in the cold-tolerant genotype under cold stress,
as these are used as substrates for cellular respiration and act
as osmolytes to maintain cell homeostasis. Time duration
had no significant effect on the soluble sugar content of rice
plants (Table 3S; Fig. 2). In stressful situations, sucrose and
glucose serve as cellular respiration substrates or osmolytes
[60, 61]. Similar variations in the soluble sugar content were
observed in earlier studies [57, 58]. Rice plants accumulate
glucose in an increasing trend under cold stress, as reported
by Ito et al. [48] and Tian et al. [62].

Oxidant/antioxidant status

In the present study, cold stress significantly increased
catalase, superoxide dismutase, ascorbate and acorbate per-
oxidase activity in plants for 24 h of the chilling cycle in
both susceptible and resistant genotypes (Table 2), and this
change was significant for resistant compared to susceptible
genotype at each time point (Table 4S; Fig. 3a—d). Post-24 h
of the cold cycle, there was a significant decrease in catalase
and SOD activity in both genotypes. Catalases and superox-
ide dismutase directly dismutase H,O, into H,O and O, [63].
A study by de Freitas et al. in rice showed that CAT activity
increased fivefold during cold stress [58]. In the same study,
SOD content increased more than 1.5-fold during cold stress
(10 °C) for 72 h [58]. In another study on rice biochemical
analyses at 15 °C for 4 days, SOD content increased during
cold stress [64]. A previous study [65] on rice seedlings
exposed to 4 °C for 7 days followed by a 2-day recovery

phase found that APX activity increased rapidly in toler-
ant cultivars and continued to increase even after recovery,
while APX activity decreased in susceptible cultivars both
at the start of low temperature and during recovery.

Tripeptide glutathione (GSH) and Glutathione reductase
(GR) play important roles in stress tolerance. GSH is an
essential metabolite for intracellular defence against ROS
damage in plants, and is abundant in reduced form in plant
tissues [66]. GR is an ASH-GSH cycle enzyme which main-
tains the reduced status of GSH. GR reduces GSH, which is
involved in many plant metabolic and antioxidant processes.
In the present study, cold stress increased GR content sig-
nificantly till 2 h of chilling in both the genotypes, which
increased further at 24 h of chilling (Fig. 3e). The total glu-
tathione increased significantly till 24 h of chilling in both
genotypes, and then declined in the recovery phase (Fig. 3f).
A previous study has reported that cold stress increases GR
content in rice [64]. A previous study on sensitive and tol-
erant rice seedlings exposed to 4 °C for 7 days and then
2 days of recovery showed that the GR activity in tolerant
cultivars increased during the chilling and recovery phases,
while the GR activity in sensitive cultivars decreased during
the chilling and recovery phases [65]. Another study [47]
has reported that cold stress (8 °C) reduced GR content in
two 7-day-old indica rice cultivars. These studies support
our observations, demonstrating that when rice plants are
exposed to cold stress, they release ROS detoxifying cata-
lases and SODs, ascorbate and ascorbate peroxidase and that
these antioxidant defence mechanisms become critical for
their survival in the high altitude cold-temperate climates
of the Himalayas (Fig. 4). There were significant differ-
ences between resistant and susceptible genotypes under
cold stress in the total antioxidant activity (TAA) (Tables 3
and 4S). A sharp increase in TAA was recorded in both
genotypes from 6 h, reaching a maximum at 24 h (Fig. 3g;
Table 3). The TAA declined sharply during the post-chilling
recovery phase. In an earlier study on the redox mechanism
in rice under abiotic stress, TAA content increased during
cold stress [47]. Similarly, in another study, DPPH assay
revealed higher antioxidant activity in tolerant genotypes
under cold stress [58]. The results in the present and earlier
studies reveal that as a redox mechanism in rice, TAA con-
tent increases during cold stress and is critical for survival
at lower temperatures.

Gene expression of some key transcription factors
under cold stress

Transcription factors are proteins that activate and/or repress
the transcription process. More than 2000 recognized and
anticipated rice transcription factors are disbursed between
63 families [67]. Several families of these transcription
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Table 3 Effect of cold stress on glutathione reductase, glutathione content and total antioxidant activity

Treatment Genotypes

Glutathione reductase Glutathione (uUM) Total antioxidant activity (uM g~ dw)

(Umin~! g7! fw)

SR-4 GS-74 Mean SR-4 GS-74 Mean SR-4 GS-74 Mean
T1 (0 h) 0969  1.28% 026 3.95° 5.16% 455 0.16" 025" 021
T2 (2h) 128" 1.60" 029 5.16° 7.34% 625 0.15° 028" 021
T3 (6 h) 1.17°  1.34% 035 5.17° 7.65% 641 0.15° 0.30% 023
T4 (24 h) 1928 225% 039 5.61% 832  6.96 0.23% 0.43* 033
T5 (P24 hrs)  1.28°  1.43%*  0.39 4254 426 425 0.13° 0.27°% 020
Mean 1.32 1.58 483 6.54 0.16 0.30
CD (p<0.05) CD (p<0.05) CD (p<0.05)

Genotype (A): 0.129
Treatment (B): 0.205
Interaction AXB: NS

Genotype (A): 0.017
Treatment (B): 0.028
Interaction AXB: 0.040

Genotype (A): 0.023
Treatment (B): 0.036
Interaction AXB: 0.012

The superscripts (a-e) or (a#-e#) within the respective genotype columns indicate that within these genotypes, treatments with the same super-

script are statistically at par with each other (at the indicated p-value)

factors have been implicated in stress responses [68]. Based
on the available literature, we selected five transcription
factors (DREB1A, DREB1B, DREB1D, OSMYB-4 and
AP-37) and studied their expression pattern at 5 °C in the

@ Springer

two contrasting rice genotypes at different time points [0 h,
2h, 6 h, 24 h, and P24 (24 h recovery post chilling)] at seed-
ling stage (Table 4; Figs. 5, 35).
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Table 4 Effect of cold stress on relative gene expression of cold stress responsive transcription factors

Genotype

Treatment

DREB 1D

DREB 1B

DREB 1A

AP37

OsMYB4

Resistant

Susceptible

Resistant

Susceptible

Resistant

Susceptible

Resistant

Susceptible

Resistant

Susceptible

1.000
0.503
5.860
0.165
0.225

1.000
0.307
2.377
4.373

1.000
1.503
2.783

1.000
0.983

1.000
1.355
4.207

1.000
0.071

1.000
2.625

1.000
1.073
1.343
0.013

1.000
1.310
1.793
2.405

1.000
0.096

T1 (0 h)
T2 (2 h)

0.014 0.012

3.610

0.088

T3 (6 h)

3.840
0.006

0.002

0.440
0.052

0.019

2.103
0.104
1.888

0.040

T4 (24 h)

0.025 0.034 0.024

0.062

0.250

0.014

T5 (P24 hrs)

Mean

1.551

1.616

1.827

0.406

1.411

0.226

0.698

1.352

0.248

Treatment; *#%* Treatment; **%* Treatment: *#%* Treatment: *#%*

Treatment: *%#*

Statistical significance

Genotype: *##* Genotype: *##* Genotype: **#: Genotype: **

Genotype: *##*

Interaction: **%:* Interaction: **%* Interaction: **%* Interaction: **%*

Interaction: *%%:*

Asterisks indicate level of statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Dehydration-responsive element binding proteins
(DREB1A, 1B and DREB1D)

Several stress-responsive genes have been demonstrated to
bind DRE (A/GCCGAC) and DRE-like cis regions and acti-
vate their expression using the DREB/CBF transcription fac-
tors [69, 70]. Overexpression of OsDREB1A, OsDREB1B,
and OsDREBI1D in rice and OsDREB1D in Arabidopsis
promotes increased cold tolerance in transgenic plants
[71-73]. The DREB1A gene showed early induction (2 h)
and increased approximately 4-folds at 6 h in the resistant
accession (GS-74) in our investigation on 4 weeks old rice
seedlings under cold stress (at 5 °C), followed by a sharp
reduction in its expression at 24 h after recovery. The sus-
ceptible accession (SR-4) had a non-significant modifica-
tion in its expression (Table 4, Fig. 5). These findings align
with a study [74] on 14-day-old rice seedlings exposed to
cold stress (5 °C) for 24 h. In a previous investigation on
17-day-old rice seedlings exposed to cold stress (4 °C), the
OsDREBI1A gene began to express after 40 min, increased
for 5 h, and then declined [71]. OSDREB1A was shown to be
upregulated by cold at 6 h, reaching a maximum of 18-fold
at 12 h, followed by a decrease in expression at 24 h in
another investigation on transcriptional profiling of 14-day-
old cold-tolerant rice seedlings under cold stress (5 °C for
48 h) [75]. Contrary to earlier studies, comparative transcrip-
tome profiling in tolerant and susceptible genotypes during
cold stress at the S3 stage revealed that OsDREB1A expres-
sion is induced at 2 h and peaks at 24 h [27].

In the present study, DREB1B gene expression enhanced
at 2 h of cold stress and increased up to 24 h with a maxi-
mum at 24 h of 3.8-fold in resistant accession (GS-74), while
in susceptible accession (SR-4) there is a mild expression
under cold stress at 2 h which decreased with time (Table 4,
Fig. 5). In an earlier study on transcriptional profiling of
14 days old cold-tolerant rice seedlings under cold stress
(5 °C for 48 h), OsDREBIB, got induced by cold at 6 h,
reaching a maximum of 20-fold at 24 h [75]. In a recent
study, expression analysis of OsDREB1B in 2-week-old rice
seedlings at 11 °C for 24 h showed around eightfold tran-
script induction in rice leaves. In the present study, DREB1D
gene expression decreased at the beginning of cold stress
(2 h), and later (at 6 h) increased sharply (nearly sixfold)
in the resistant genotype. In the susceptible genotype, its
expression reached a maximum value at 24 h under cold
stress. In contrast, surprisingly, its expression dropped dras-
tically in the resistant genotype (nearly 4-folds) (Table 4,
Fig. 5). Expression analyses of 2-week-old rice seedlings
at 11 °C for 24 h showed around fourfold OsDREB1D tran-
script induction in rice leaves [76], while in an earlier study,
Dubouzet et al. [71] on 17 days old rice seedlings under
cold stress (4 °C), OsDREB1D expression was not detected
in plants under cold stress. The disparities in expression

@ Springer
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Fig.5 Relative gene expression of transcription factors in response to
cold stress treatment: a OsMYB; b AP37; ¢ DREBIA; d DREBIB;
e DREBI1D. Leaves were collected at 0, 2, 6, 24 and P24 h. a-actin
was used as internal standard. Values are means =+ standard errors of
three biological repeats; f Association network of transcription fac-

profiles between studies can be attributed to the differences
in cold stress temperature, cold stress duration, and time
points of sample collection.

AP37

AP37, a member of the APETELA2 (AP2) subfamily is
an anther-specific aspartic protease involved in tapetal
programmed cell death (PCD). In the present study, AP37
expression increased in the resistant genotype till six hours
of chilling (3.6 fold) and decreased at 24 h and in the recov-
ery phase. Contrastingly, for the susceptible genotype, this
change was subtle at six hours of chilling (1.36 fold) and
declined after that (Table 4; Fig. 5).

In a study by Oh et al. it was observed that the expres-
sion of AP37 in rice at 4 °C up to 6 h, increased rapidly
within 30 min upto 2 h, followed by an instant decrease
[21]. In another study conducted on expression analysis of
cold-induced transcription factor genes in 14 days old rice
seedlings under cold stress (5 °C) for 24 h, the expression
of OsAP37 gene was upregulated in the resistant genotype
(8-folds) but remained unaltered in the susceptible genotype
[74], which is consistent with our results.
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[ Resistant
*okkk *okkok Hokokok
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Time duration

tors DREB1A (ERF24), DREB1B, DREB1D, OSMYB4 (LTR1) and
AP37 in STRING. The thickness of the line indicates the degree of
confidence prediction of the interaction. Network nodes represent
proteins and edges represent protein—protein associations

OSMYB-4

The OsMyb4 gene from rice is a member of myeloblastosis
protein family (MYB) of TFs, which has been introgressed
into several plant species and its role in abiotic/biotic stress
responses evaluated [77-80]. In the present study, transcrip-
tion factor OsMYB4 showed early induction at 2 h reach-
ing maximum expression at 24 h in the resistant genotype
(GS-74) and after that, there was a sharp decrease in its
expression. In contrast, in the susceptible genotype (SR-4)
there was no expression under cold stress (Table 4, Fig. 5).
In a study by Vannini et al. [81] on overexpression of rice
OsMYB-4 gene at 4 °C, OsMYB-4 was induced in 3-day
rice coleoptiles after 4 h of (4 °C) cold treatment. In another
study by Vannini et al. on transgenic plants of tomato
ectopically expressing the rice OsMYB4 gene at 4 °C, the
OsMYB4 expression was elevated after 8 h of cold stress
[77]. In a study by Soltesz et al. on rice, OsMYB4 gene
enhanced germination in transgenic 10-day-old barley plants
under cold stress (at 4 °C), and was upregulated after cold
treatment [79]. In another study conducted by Baldoni et al.
on the OsMYB4 gene family in rice seedlings placed at 4 °C
in the light for 24 h, OsMYB-4 gene expression was upregu-
lated at 4 h, reaching a maximum at 24 h [82]. In a study
conducted by de Freitas et al. in rice under low temperature
(10 °C) for a period of 72 h, OsMYB4 was induced with
time in all the genotypes with maximum at 3 h in one geno-
type while at 48 h in some other genotypes [83].
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Table 5 Effect of cold stress on different physiological and agronomic traits

Genotypes

Condition

Number of tillers

Shoot biomass (g/plant) Root biomass (g/plant)

Shoot height (cm)

Grain yield (g/plant)

Resistant Susceptible Resistant Susceptible Resistant Susceptible Resistant Susceptible Resistant

Susceptible

19.33
16.00
17.67
17.24%

25.00
18.00
21.50
28.00%

19.31

15.70

21.16

24.56

127.00

109.22

15.87
14.42
15.14
9.09%

31.39
26.45

Control

14.47
16.89
25.06%

8.43
12.06
46.32%

18.54
19.85
12.37%

17.68
21.12

124.46

100.75

Treated
Mean

125.73
2.00%

104.98
7.75%

28.92
15.73%

28.00%

Percent reduction

Condition: *

Condition: **

Condition: NS Condition: NS

Condition: NS

Statistical significance

Genotype: NS Genotype: NS Genotype: * Genotype: *

Genotype: ***

Interaction: NS Interaction: NS Interaction: NS Interaction: NS

Interaction: NS

Asterisks indicate level of statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

In conclusion, the disparities in expression profiles
between studies could be due to differences in cold stress
temperature (which ranged between 4—14 °C), duration
(ranging from 15 min to several days), and time points at
which samples were collected for analysis. The transcrip-
tion factors under study have a significant role in regulat-
ing developmental and stress responses. DREB1 (A, B, D)
transcription activators bind specifically to the C-repeat/
DRE element DNA sequence 5'-[AG]JCCGAC-3' mediat-
ing high-salinity and dehydration-inducible transcription.
Anther-specific aspartic protease (AP37), though involved
in tapetal programmed cell death (PCD) showed interaction
with MYB4, playing an indirect role in modulating cold tol-
erance (Fig. 5f). MYB4 is involved in cold stress response
and positively regulates the expression of genes involved in
scavenging reactive oxygen species (ROS). It transactivates
a complex gene network affecting stress tolerance and pani-
cle development [84].

Overall, the transcription factors DREB1A (ERF24),
DREBI1B, DREB1D, OSMYB4 (LTR1) and AP37 played
a significant role based on Tukey’s multiple comparisons
test (Table 5S) which correlates with the typical association
network of these transcription factors in STRING (as shown
in Fig. 5%).

Phenotypic characteristics

Cold damage at the vegetative stage is significantly lower
than at the reproductive stage, because the former has a
lower threshold temperature (10-13 °C) while the latter has
a higher threshold temperature for cold damage (18-20 °C)
[85]. The present study showed that cold damage at the seed-
ling stage caused a non-significant decrease in phenotypic
characteristics like shoot height and shoot biomass in both
cold tolerant and susceptible genotypes (Table 5, Fig. 6).
However, there was a significant decrease in the number of
tillers and root biomass due to cold stress at the S3 seedling
stage, which ultimately affected the grain yield adversely.
The decrease in grain yield of resistant genotype GS74 was
9.13%, which is statistically insignificant, while in suscep-
tible type, it was 15.73% (statistically significant) (Fig. 6).
We conclude that rice seedlings exposed to cold stress
induce the synthesis and accumulation of cryo-protect-
ants and osmoprotectants like proline and sugars, thereby
enhancing plant’s cold tolerance through modulation of gene
expression, osmotic adjustments, and ROS scavenging.

Broad outline of cold tolerance in rice
Plants perception and adaptation to adverse climatic condi-
tions in influenced by stress hormones like abscisic acids,

ethylene, salicylic acid, jasmonic acid, gibberellins, brassi-
nosteroids, and cytokinins are induced under abiotic stress

@ Springer
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conditions to enable optimal responses [5, 86]. Among these,
abscisic acid (ABA) is the central regulator of abiotic stress
resistance and coordinates a range of functions [87]. Stress-
responsive genes are expressed either via ABA-dependent
or ABA-independent pathways [84]. Several transcription
factor families play an important role in stress signal trans-
duction, including APETALA2/ethylene-responsive factor
(AP2/ERF), WRKY, NAC/ZF-HD, and MYC (myelocy-
tomatosis oncogene)/MYB (myeloblastosis oncogene) [88].
ABA-dependent signalling systems mediate stress adaptation
by inducing regulons like (i) the AREB/ABF bZIP regulon;
and (ii) the MYC/MYB regulon [89-91]. ABA-independent
signalling systems mediate stress adaptation through (i) the
CBF/DREB regulon (AP2/EREBP (ERF); and (ii) the NAC
(NAM, ATAF and CUC) and ZF-HD (zinc-finger homeo-
domain) regulon [19, 91]. However, some studies show the
existence of both ABA-dependent and independent path-
ways of stress response that function through AP2/EREBP
(ERF) family [92, 93]. Rice ERF gene AP37, though not
induced by ABA [21] interacts with OsMYB4, which regu-
lates expression of genes involved in ROS scavenging [94].
DREBI induces the expression of genes involved in ROS
detoxification, membrane transport, osmolyte biosynthesis,
and phosphoinositide metabolism [95—100]. The osmopro-
tectants and antioxidants stabilize cellular membranes and
restore cellular homeostasis. Expression of genes involved in
cellular regulation leads to protein synthesis and modifica-
tion of preexisting proteins which help plants to repair the
damaged protein machinery (Fig. 7).

Conclusions

Owing to climate change, rice-growing regions in the west-
ern Himalayas experience harsher, lower temperatures
more frequently, especially during spring, coinciding with
the early rice-growing season. Unlike most earlier studies
worldwide, rice germplasm of the region was screened at
a lower temperature of 5 °C at the S3 seedling stage. The
screening results and molecular analyses suggested that the
mechanisms triggered by cold stress in rice seedlings depend
on the rice ecotype; and that most (more than 80%) of the
indica types clustered into cold-sensitive class, while the
Japonica types were widely distributed across all cold-stress
response categories.

Cold stress reduced the tiller number, root biomass and
rice productivity, even when the rice plants were in the
early vegetative stage (S3). Osmoprotectants and antioxi-
dants were induced to alleviate the oxidant stress caused by
ROS generation in plants witnessing cold-stress. Differen-
tial expression of transcription factors OsMYB-4, OsAP-
37, OsDREB1A and OsDREB1B, presented a clear contrast
between resistant and susceptible genotypes, implying that

these transcription factors caused differential competence of
redox-regulatory mechanism under cold stress in rice, and
their expression was genotype-dependent. These transcrip-
tion factors (OsMYB-4, OsDREB1A and OsDREB1B) are
good candidates for developing cold-stress-resistant geno-
types through genetic manipulation.
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