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Abstract
Here, 140 pigmented rice genotypes from the North Western Himalayas were evaluated with the objective of addressing the concerns of 
nutritional insecurity faced by the population having rice as a staple food. Using an augmented block design, we assessed morphological 
traits alongside biochemical traits like total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. The principal 
component analysis identified genotypes SR-2 and NBPGR-16 as promising for plant height and panicle length, while GS-608 excelled 
in grain yield and antioxidant activity. High TPC and TFC were found in Black Rice, SKUA-533-1, and ZAG-V4, with GS-596 and Chanab 
showing strong antioxidant activity. Furthermore, the results revealed substantial variability, indicating the potential for targeted 
breeding to enhance yield and nutritional quality. This study highlights promising pigmented genotypes with superior agronomic 
performance and health-promoting properties, providing a foundation for breeding programs aimed at improving food security and 
public health through biofortified rice.
Keywords: Pigmented rice, Genetic Variability, Flavonoids, Phenols, Antioxidants.
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Introduction
Rice (Oryza sativa L.) is indispensable for global food security, 
serving as a staple food for over half the world’s population, 
particularly in Asia, Africa, and Latin America. With an 
estimated global population increase to 9.7 billion by 2050 
and amid evolving climate challenges, enhancing rice yield 
and quality has become a critical priority. Although rice 
breeders have made strides in yield improvement, progress 
is constrained by limited genetic diversity within cultivated 
rice (Xing et al., 2010). To bridge this knowledge gap, it is 
essential to explore untapped genetic variability in diverse 
rice germplasm (Devi et al., 2017). 

Beyond yield, the nutritional quality of rice is gaining 
importance. White rice contains significantly fewer 
bioactive compounds compared to pigmented rice varieties 
(Unpublished data). Black rice exhibits the highest levels of 
flavonoids, followed by red rice, while white rice has the 
lowest content. Additionally, the antioxidant capacity of red 
and black rice is notably high, primarily due to the presence 
of catechin in red rice and quercetin in black rice (Chen et 

al., 2022). These compounds have been traditionally valued 
for therapeutic purposes. This study advances prior research 
by providing a comprehensive analysis of 140 diverse 
rice genotypes, both pigmented and non-pigmented, 
from Kashmir Valley and Northeast India. While previous 
studies, such as those by Kaur et al. (2018), addressed limited 
genotypic diversity of North Western Himalayas, especially 
Kashmir valley, our work encompasses a broader genetic 
spectrum, including landraces, pigmented, aromatic, and 
some released varieties from the North-Western Himalayas. 
This expanded genetic framework highlights the untapped 
potential of pigmented rice for biofortification and lays a 
foundation for identifying key quantitative trait loci (QTLs). 
These findings will guide the development of targeted 
breeding strategies, such as crossing high-yielding varieties 
with nutritionally superior pigmented genotypes, to bridge 
existing gaps in nutritional quality and yield stability across 
diverse agro-climatic zones.

This study was conducted over two consecutive kharif 
seasons, from 15th June to 8th October 2022 and from 7th 
June to 15th October 2023, at the experimental field of 
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MRCFC Khudwani, SKUAST-Kashmir, India. A total of 144 
pigmented rice genotypes, including four checks from 
Kashmir Valley and Northeast India, were evaluated. The 
genotypes were planted in an augmented block design 
with seven blocks and four check varieties, following 
recommended agronomic practices with 20 x 10 cm spacing. 
Five plants were randomly selected and tagged from each 
line of individual genotypes for observations at different 
growth stages. Traits measured included grain yield, 1000 
seed weight, spikelets per panicle, number of tillers, plant 
height (cm), panicle length (cm), days to 50% flowering, 
phenols, flavonoids and antioxidant content. Data analysis 
was done using ANOVA in the R package ‘augmented RCBD’ 
to assess variability, heritability, and genetic parameters. 
Further, trait variability was evaluated through range, mean, 
and coefficient of variation, with correlations and principal 
component analysis employed to explore trait associations. 
For biochemical parameters, total phenolic content (TPC) 
and total flavonoid content (TFC) estimation were carried out 
using the method proposed by Shen et al. (2008) with slight 
modifications. DPPH method (2, 2-diphenyl-1-picrylhydrazyl) 

was used for antioxidant activity estimation (Oki et al., 2005). 
Further, the population structure analysis was done using 
the Bayesian clustering method in STRUCTURE version 2.3.4 
(Pritchard et al. 2000) by analysis of SSR-based marker data. 
The length of the burn-in period and Markov Chain Monte 
Carlo (MCMC) were set at 100,000 iterations (Evanno et al. 
2005). To obtain an accurate estimation of the number of 
populations, three runs were performed for each K-value, 
ranging from 1 to 10. Further, Delta K (Figure 1b) values 
were calculated and the appropriate K value was estimated 
by implementing Evanno et al. (2005) method using the 
STRUCTURE Harvester program (available at http://taylor0.
biology.ucla.edu/structureHarvester/).

The study revealed significant phenotypic and genotypic 
variability across multiple rice genotypes, which highlights 
promising opportunities for enhancing key traits. Phenotypic 
analysis showed a wide range of variability, with traits like 
days to 50% flowering, plant height, tiller number per plant, 
grain yield, spikelets per panicle, panicle length, and 1000 
seed weight displaying notable variation. ANOVA results 
(Table 1) demonstrated significant differences for both 
adjusted and unadjusted sums of squares, underscoring 
the presence of substantial genetic diversity, consistent 
with findings by Bairwa et al., 2023; El-Agoury et al., 2024. 
This aligns with prior studies suggesting that phenotypic 
variability is crucial for selection in crop breeding (Naseem 
et al., 2014).

In terms of genetic parameters (Table 2), the study 
found that phenotypic coefficient of variation (PCV) values 
exceeded genotypic coefficient of variation (GCV) across 
all traits, indicating a notable environmental influence. 
Heritability in the broad sense, combined with genetic 
advance, was particularly high for traits such as grain yield 
and spikelets per panicle, suggesting that these traits 
could be reliably improved through selection. Traits with 
high heritability and genetic advance indicate a strong 
genetic basis, making them suitable targets for breeding. 
However, for traits with lower heritability, such as the 
number of effective tillers, environmental factors likely 
play a more substantial role, complicating the reliability of 
direct selection.

In the biochemical analysis (Figure 1a), pigmented 
rice genotypes (black, red, purple, brown) showed high 
levels of bioactive compounds, with black rice exhibiting 
the highest phenolic (upto 1563.59 mg GAE/100 g) and 
flavonoid contents (523.69 mg RE/100 g), along with 
antioxidant activity of 94.68%. These results align with 
previous observations that pigmented rice tends to have 
higher bioactive content compared to non-pigmented 
varieties, suggesting their potential for enhancing 
nutritional value. Notably, even non-pigmented white rice 
genotypes demonstrated significant variation in phenolic 
and flavonoid contents, with certain genotypes surpassing 
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Table 1: ANOVA for augmented block design for seven traits in 140 pigmented rice genotypes

Source Df 50F PH PL NT SPP GY 1000 SW

Treatment (ignoring Blocks) 143 64.0 4** 328.89 ** 7.46** 3.70 ** 783.41 ** 151.41 ** 18.38 **

Treatment (eliminating Blocks) 143 44.46** 246.39** 6.52** 3.27 ns 606.27** 125.94** 17.42**

Block (eliminating Treatments) 6 1.17 ns 9.82ns 0.54 ns 0.31 ns 313.49 ns 0.58ns 0.39 ns

Block (ignoring Treatments) 6 467.86** 1976.04** 23.08** 10.51** 4535.33** 607.48** 23.16**

Checks 3 680.92** 2294.65** 57.11** 29.14** 2690.30** 433.34** 74.12**

Test entries vs. Checks 1 1.09 ns 00.0 ** 45.87 ** 1.87 ns 6.34 ns 418.14** 421.74 **

Test entries 139 51.18 ** 288.83** 6.12** 3.17 ns  747.84** 143.40** 14.27**

Error 18 1.61 6.20 1.01 1.84 206.86 0.59 0.38

PH= Plant Height, PL= Panicle Length, NT= Number of tillers per plant, SPP= Spikelets per Panicle, DF= Days to 50% flowering, GF= Grain yield, 
SY= Seed yield, 1000 SW= 1000 seed weight

Table 2: Descriptive and genetic variability analysis for seven traits in 140 pigmented rice genotypes

Trait Mean
Range Coefficient of variation

h2(%) GA GA%
Min Max GCV (%) PCV (%)

50F     95.77 79.94 113.44 7.35 (Low) 7.47 (Low) 96.86 (High) 14.30 14.93 (Medium)

PH      114.43 76.84 147.50 14.69 (Medium) 14.85 (Medium) 97.85 (High) 34.31 29.98 (High)

PL      21.17 14.82 27.15 10.68 (Medium) 11.68 (Medium) 83.49 (High) 4.26 20.12 (High)

NT     11.69 7.33 17.88 9.85 (Low) 15.23 (Medium) 41.83 (Medium) 1.54 13.14 (Medium)

SPP     117.83 51.38 188.67 19.74 (Medium) 23.21 (High) 72.34 (High) 40.81 34.63 (High)

GY      25.78 5.57 57.27 46.35 (High) 46.45 (High) 99.59 (High) 24.60 95.43 (High)

1000 SW  24.49 8.69 34.75 15.22 (Medium) 15.43 (Medium) 97.33 (High) 7.59 30.97 (High)

PH= Plant Height, PL= Panicle Length, NT= Number of tillers per plant, SPP= Spikelets per Panicle, DF= Days to 50% flowering, GF= Grain yield, 
SY= Seed yield, 1000 SW= 1000 seed weight, (PCV %) Phenotypic coefficient of variation percentage, (GCV %) Genotypic coefficient of variation 
percentage, (h2%) Heritability percentage, GA Genetic Advance, GA% Genetic Advance as percentage mean.

pigmented ones. This suggests that some white rice 
varieties may also serve as valuable nutritional resources 
(Figure 1a). Correlation analysis revealed a strong positive 
association between flavonoid content and antioxidant 
activity, indicating that flavonoids significantly contribute to 
antioxidant properties. Morphological traits, especially grain 
yield, positively correlated with panicle length, days to 50% 
flowering, number of effective tillers, 1000 seed weight, and 
spikelets per panicle, supporting the study indicated that 
these traits are critical for yield improvement (Anisuzzaman 
et al., 2023). Conversely, a negative correlation was observed 
between plant height and tiller number, highlighting 
potential trade-offs between plant architecture and yield 
traits. Principal component analysis (PCA) identified three 
significant components explaining 61.35% of the total 
variance. The first two components, which captured nearly 
50% of this variance, were strongly associated with plant 
height, panicle length, and antioxidant activity, suggesting 
these traits as key differentiators among genotypes. The 
genotype-by-trait (GT) biplot (Figure 2) further supported 

this, as genotypes with high PC scores for yield and 
biochemical traits clustered together. In conclusion, 
based on multivariate analysis and genetic evaluation, we 
identified several potential rice genotypes with exceptional 
performance as GS-596, Chanab, Zag-V4, and NBPGR-11-1, 
that showed high antioxidant activity. For flavonoid content, 
Black Rice was the top performer, followed by SKUA-544, 
Zag-V3, Zag-V4, and NBPGR-21, while ZAG-V5, ZAG-V4, black 
rice, GS-596, and Jehlum excelled in phenolic content. From 
PCA results we found SR-2, NBPGR-16, NBPGR-2, NBPGR-
34, and NBPGR-5 contributed most towards plant height, 
panicle length, and 50% flowering. Further traits like grain 
yield and antioxidant activity having dominant contributions 
in PC2 were represented by GS-608, GS-480, GS-484, GS-474, 
and GS-621. For PC3, phenolic and flavonoid content were 
key traits, with black rice, SKUA-533-1, ZAG-V4, ZAG-V15, 
and SKUA-556 as leading genotypes. These genotypes hold 
strong potential for breeding programs aimed at improving 
rice varieties for both nutritional quality and agronomic 
performance.
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Figure 1: (a): Distribution of phenols, flavonoids and antioxidant activity in colored rice germplasm., (b): Delta K showing the number of 
populations, (c):  Population structure of 147 rice genotypes.

Figure 2: Genotype by trait (GT) biplot based on the individual genotypic data explaining the contribution of 10 traits to the total variation. 
The biplot was based on singular value decomposition of trait-standardized data (“Scaling = 1, Centering = 2”) and trait-focused singular value 

partition (“SVP = 2”)

The population structure analysis grouped the population 
into four sub-populations (Figure 1c), reflecting their diverse 
genetic backgrounds. Landraces predominantly belonged 
to the green cluster, indicating high genetic uniformity with 
minimal admixture. Indian collections were largely assigned 
to the yellow cluster, with some genotypes showing 
admixture, suggesting historical gene flow. Advanced 
breeding lines exhibited significant admixture, highlighting 
their derivation from diverse parental sources. Similarly, 
released varieties displayed contributions from all clusters, 
reflecting efforts to combine genetic resources for improved 
traits. Collections from international sources primarily 
clustered in the red group, indicating their distinct genetic 

composition. This emphasized the importance of utilizing 
diverse genetic resources, particularly the landraces and 
exotic collections, in breeding programs to enhance genetic 
diversity and adaptability. Preserving unique landraces and 
leveraging exotic collections can contribute to sustainable 
crop improvement efforts.
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Abstract
Plants, as sessile organisms, must adapt to dynamic environmental changes through a range of response strategies that confer 
phenotypic flexibility. Breakthroughs in next-generation sequencing technologies have led to significant improvements in our 
understanding of the genomic and molecular mechanisms underlying plant growth, development and stress responses. Non-
coding RNAs (ncRNAs), have emerged as pivotal regulators in these processes. This article reviews the roles of regulatory 
ncRNAs in plant stress responses and development, highlighting their intricate molecular interactions. It presents a compre-
hensive atlas of differentially regulated ncRNAs across key crop genomes, enhancing our understanding of their roles in stress 
responses, growth, and development. The atlas presented herein offers a foundation for further research in agronomically 
important crops, paving the way for crop improvement through genetic engineering and sustainable agricultural practices. 
Additionally, we discuss the role of ncRNAs that have already been functionally characterized in growth, development and 
stress tolerance, providing insights into their potential for developing stress-resistant and high-yielding crops.

Keywords  Non-coding RNAs (ncRNAs) · Plant stress · Gene regulation · Crop improvement · Cereals

Introduction

Plants need to meticulously coordinate their responses to 
different environmental stresses with their growth, develop-
ment, and reproductive processes. They activate specific sig-
nalling pathways and adjust their gene expression to survive 
and adapt. The regulatory mechanism of gene expression 
is the major unanswered query in the intriguing domain of 
plant stress response, and these are uncovered using novel 
breakthrough technologies like multiplexing highly selec-
tive chemical probes for profiling ‘active protein in intact 
cells’ (Activity Based Protein Profiling) [1]. The elements 
in the regulatory system are crucial in reprogramming at the 
transcriptional, post-transcriptional, and epigenomic levels 
so that plants adapt to biotic and abiotic stresses [2, 3]. Sev-
eral biotechnological methods have been utilized to alter the 
genetic makeup of significant crops for economic purposes, 

creating genetically modified plants with enhanced resist-
ance against biotic and abiotic stressors [4, 5]. However, 
the utilization of genetically modified plants harbouring 
trans- or cis-genes has faced significant scepticism due to the 
potential risk of the transfer of these ‘genes’ across natural 
sexual barriers, and the so-called ‘precautionary principle’ 
[6, 7]. Modern biotechnological approaches and technolo-
gies based on multi-omics, robotics, nanotechnology, and 
plant-microbial interactions are being integrated to over-
come these challenges [8–11]. One of the most promising 
molecular biology-based resources includes the major-effect 
multiple trait coding ‘pleiotropic genes’ because these can 
target multiple stresses simultaneously [12]. However, recent 
advancements have highlighted the importance of ‘inter-
genic’ regions between protein-coding genes, which are 
‘non-coding regulatory RNAs’. These RNAs are frequently 
known as non-coding RNAs (ncRNAs). These ncRNA tran-
scripts were historically dismissed as transcriptional noise 
due to their inability to code for proteins, and their often 
poorly conserved sequences arising from regions of the 
genome once thought to be inactive, known as intergenic 
regions, transposons, pseudogenes and repetitive sequences 
[13].
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Long non-coding RNAs (lncRNAs) function as interme-
diaries between RNA molecules and proteins. Depending 
on their interactions, lncRNAs can act as transcriptional 
activators, enhancing gene expression, or as repressors, 
inhibiting it. Plant lncRNAs function in both cis and trans 
contexts [13]. Cis-acting lncRNAs function near their sites 
of synthesis. They act directly on local nucleotide sequences 
or chromosomal regions associated with one or more adja-
cent genes. Conversely, trans-acting lncRNAs migrate from 
their point of synthesis and can impact multiple genes, even 
across considerable distances, including those located on 
different chromosomes. Furthermore, lncRNAs can also 
serve as precursors for small RNAs (sRNAs). Certain lncR-
NAs can form double-stranded RNA duplexes with Natural 
Antisense Transcripts (NAT), generating sRNAs that per-
form regulatory functions. Additionally, lncRNAs can serve 
as miRNA decoys, binding to miRNAs and preventing them 
from interacting with their target mRNAs. This interference 
reduces miRNA activity and relieves the repression of the 
target gene. Moreover, lncRNAs often act through various 
mechanisms, such as protein-protein interactions and post-
translational modifications via epigenetic regulatory mecha-
nisms, including methylation of DNA, histone modification, 
and chromatin remodelling.

The review highlights a comprehensive analysis of the 
roles of non-coding RNAs (ncRNAs) in regulating plant 
growth, development, and stress responses. The review 
attempts to present a comprehensive genome-wide atlas of 
ncRNAs in field crops (cereals, pulses and legumes). Fur-
thermore, the article aims to enlist and provide useful infor-
mation about the prospects of using ‘functionally validated 
ncRNAs’ to enhance crop resilience and as biomarkers for 
stress tolerance.

Non‑coding RNAs functions in plant growth 
and development: an overview

miRNAs play a key role in modulating gene expression 
across multiple aspects of plant growth and development. 
The study of plant developmental stages revealed a complex 
network of miRNAs and their target genes. miRNA-target 
modules include miR156-SPL, miR159-MYELOBLAS-
TOSIS (MYB), miR172-APETALA 2 (AP2), and miR156-
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 
[14]. The miR156-SPL module in Arabidopsis operates 
as a negative regulator during the stages of germination, 
vegetative growth, and reproductive development. Reduced 
miR156 levels lead to increased SPL expression, thereby 
accelerating these transitions. Conversely, the miR172-AP2 
module facilitates these developmental transitions [15]. Ele-
vated miR172 levels decrease AP2 expression, promoting 
the transition. Numerous studies have shown that miRNAs 

function in conjunction with various hormones, including 
abscisic acid (ABA) and gibberellic acid (GA), to control 
the germination and dormancy of plants. For example, 
miR159 plays a critical role in modulating seed dormancy 
and germination by maintaining a balance between ABA and 
GA hormone levels [16]. It achieves this by targeting MYB 
transcription factors, MYB33, MYB101, which positively 
regulate abscisic acid signalling during seed germination 
and dormancy, as shown in (Fig.1). Moreover, different miR-
NAs targeting multiple members belonging to the same gene 
family contribute to a wide range of biological functions. As 
an instance, miR160 negatively controls the expression of 
AUXIN RESPONSE FACTORS (ARFs) in rice and Arabi-
dopsis affecting seed germination [17]. Likewise, miR167 
promotes root development by regulating the expression of 
ARF6 and ARF8 [18]. Polarity in leaves is regulated by tar-
geting multiple ARF genes through the generation of small 
interfering RNAs (siRNAs) by miR165/166 [19]. These 
observations point out the specialized regulatory functions 
of miRNAs during various developmental phases. They 
achieve this through their involvement in specific signalling 
pathways. miRNAs can integrate their actions to modulate 
a particular biological function. Within a miRNA family, 
different isoforms can participate in analogous biological 
functions by targeting either the same genes or various genes 
[20]. An example is the involvement of the miR159a.1-
MYB and miR159a-p5-Tetraketide alpha-pyrone reduc-
tase 1 (TKPR1) modules in male meiosis, with substantial 
expression observed in pollen and embryo sacs. Together 
the complex regulatory network of miRNA-target modules 
forms the molecular basis of plant growth and development 
as shown in (Fig.1).

Besides miRNAs, siRNAs have demonstrated significant 
involvement in plant development [21]. For example, the 
ARF family members are targeted by the phased TAS3-
tasiRNAs which originate from the miR390-AGO7 complex. 
This regulatory network is essential to many aspects of plant 
development and is conserved across plant species. It affects 
the genesis of embryos, root architecture, shoot apical mer-
istem (SAM) development, leaf morphology, flower devel-
opment, and phytohormone interactions during develop-
mental transitions [22]. miR828 activates TAS4-tasiRNAs, 
which target MYB genes involved in anthocyanin produc-
tion in Arabidopsis. This includes the genes PAP1, PAP2, 
and MYB113 [23] as shown in (Fig.1). Remarkably, two 
homologous MYB genes that correspond to TAS4 orthologs 
in both cotton and Arabidopsis are involved for regulating 
fibre development in cotton. miR828 targets one of these 
MYB genes to generate 21-nt phasiRNAs. Furthermore, 
miR828 produces phasiRNAs and cis- and trans-acting siR-
NAs that also contribute to the regulation of trichome (hair) 
formation [24]. While there has been less research on natural 
antisense siRNAs (natsiRNAs) and heterochromatic siRNAs 
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(hcsiRNAs) in plant development, they have been studied in 
specific contexts. For example, cell-specific atsiRNAs have 
been shown to regulate the KOKOPELLI (KPL) and ARI-
ADNE14 (ARI14) genes during the double fertilization pro-
cess in Arabidopsis. These findings underscore the diverse 
and complex roles of siRNAs in governing various aspects 
of plant development.

Long non-coding RNAs (lncRNAs) are implicated in 
plant development through diverse regulatory pathways. 
There are over 1543 experimentally verified lncRNAs from 
77 species in the EVLncRNAs database. It has provided 
valuable insights into the realm of long non-coding RNAs 
(lncRNAs). 428 lncRNAs from 44 plant species, including 
rice and Arabidopsis, have been catalogued in this data-
base [25]. In mammals, lncRNAs are recognized for their 
function in gene expression regulation through chromatin 
remodelling. Interestingly, certain plant lncRNAs, such as 
COLDAIR, also function via this regulatory pathway. Suc-
cessful reproduction is closely tied to the precise timing of 
floral transition and robust flower development in plants. 
Regulation of flowering time encompasses internal signals, 
such as plant hormones, and external cues, such as day 
length and temperature. The prolonged cold exposure during 
winter, known as vernalization, leads to the downregulation 
of the major flowering repressor, FLOWERING LOCUS C 
(FLC), thus promoting flowering in spring in Arabidopsis. 
A number of long non-coding RNAs (lncRNAs), such as 

COLDAIR, COOLAIR, ANTISENSE LONG (ASL), and 
COLDWRAP, are essential for precisely regulating the 
expression level of the Flowering locus (FLC) [26]. As an 
example, following vernalisation, COLDAIR is engaged 
in suppressing FLC. It interacts with the PRC2 complex’s 
CURLY LEAF (CLF) protein, with the strongest associa-
tion occurring after 20 days in the cold [27]. PRC2 must be 
recruited to the FLC locus by COLDAIR in order to facili-
tate the insertion of the repressive H3K27me3 chromatin 
modification.

Many long non-coding RNAs (lncRNAs) have been iden-
tified as important regulators of various aspects of flower 
and reproductive development. These include LINC-AP2, 
Photoperiod-sensitive genic male sterility T (PMS1T), and 
Early flowering-completely dominant (Ef-cd) and Long-day 
specific male-fertility-associated RNA (LDMAR) [26]. An 
example of this relationship can be observed in LINC-AP2, 
an intergenic lincRNA that is positioned close to the flower 
development governing gene APETALA2 (AP2). Interest-
ingly, when AP2 expression is reduced by Turnip crinkle 
virus (TCV) infection, LINC-AP2 expression increases 
conversely. This notable elevation of LINC-AP2 expres-
sion has been associated with the formation of abnormal 
floral structures [28]. Moreover, there is a long intergenic 
rice lncRNA known as XLOC-057324, which exhibits high 
expression levels in reproductive organs. A comprehensive 
analysis involving T-DNA insertion mutants suggests that 

Fig. 1   Regulation of plant growth, development and stress responses 
by miRNAs. This figure illustrates various miRNA-target modules 
that are crucial for plant growth and development, as well as their 

roles in mediating responses to abiotic and biotic stresses. The dia-
gram highlights how different miRNA regulate these processes and 
adapt plant physiological mechanisms to environmental challenges
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this lncRNA plays a role in the regulation of flowering and 
plant fertility [29].

Insights from overexpression 
and loss‑of‑function studies into the role 
of non‑coding RNAs in plant growth 
and development

Non-coding RNAs (ncRNAs) play critical roles in regulat-
ing plant growth and development across various stages. In 
Arabidopsis thaliana, ncRNAs are involved in processes 
like seed germination, lateral root development, and veg-
etative phase transition. For instance, disruption of the 
miR156 → SPL13 pathway delays seedling development 
[30]. miR156 and miR172 also interact to control post-ger-
mination growth, with miR156 overexpression delaying the 
juvenile-to-adult phase transition [31]. Fertility, too is influ-
enced by miR156/7 targeting SPL genes, where mutations 
lead to sterility [32]. In Nicotiana tabacum, miR156 plays 
a key role in regulating the juvenile-to-adult phase transi-
tion. Overexpression of miR156 extends the juvenile phase, 
while knockdown of miR156 accelerates the transition to 
the adult phase. This miRNA also influences various vegeta-
tive traits, including leaf shape, trichome density, stomata 
number, and chlorophyll content, which collectively differ-
entiate the juvenile and adult phases in tobacco [33] (Fig.1 
and Table 1). In Oryza sativa, miR156 is involved in regu-
lating leaf development and phase change. Overexpression 
of miR156 accelerates leaf maturation and promotes rapid 
tiller initiation, while also affecting temporal gene expres-
sion, including other miRNAs. miR156 regulates leaf devel-
opment in an age-dependent manner, with higher expression 
in older leaves [34]. Additionally, miR156 controls panicle 
architecture by targeting genes like LAX1, LAX2, RCN2, 
and OsRA2, which are involved in axillary meristem devel-
opment and pedicel length regulation. Genetic interactions 
between these genes and miR156 influence panicle traits, 
with a buffering mechanism suggested between miR156 and 
RCN2 [35]. In Triticum aestivum, miR156 plays a crucial 
role in regulating plant architecture, including tillering and 
spikelet formation, by repressing SPL genes and interact-
ing with strigolactone (SL) signalling. Overexpression of 
miR156 increases tiller number but severely disrupts spike-
let formation. Specifically, miR156 represses TaTB1 and 
TaBA1 through TaSPL3/17. Additionally, the SL signalling 
repressor TaD53 interacts with miR156-regulated TaSPLs 
to suppress TaTB1 and TaBA1, impacting both tillering and 
spikelet development [36]. miR156 also influences ovary 
development and carpel formation by regulating SPL genes 
and meristematic activity, with overexpression causing 
abnormal flower and fruit morphology [37] (Fig.1)(Table 1). 
In mulberry (Morus spp.), miR156 regulates the MnSPL/

mno-miR172 pathway to control the vegetative phase tran-
sition. Overexpression of miR156 in transgenic Populus 
extends the juvenile phase. In mulberry, miR156 represses 
mno-miR172 and modulates the expression of nine MnS-
PLs, which are direct targets of miR156. MnSPLs activate 
transcription of mno-miR172, but miR156 represses it to 
regulate developmental transitions [38].

Root development is modulated by miR160, which regu-
lates ARF genes and influences root elongation and lateral 
root formation [39], while miR164 regulates lateral root 
emergence by targeting NAC1 [40]. In Medicago truncatula, 
miR160 regulates root growth and nodulation by targeting 
ARF genes. Overexpression of miR160 causes root growth 
defects, disorganization of the root apical meristem (RAM), 
gravitropism issues, and reduced nodule numbers. miR160 
expression varies during root and nodule development, with 
distinct profiles for mtr-miR160d and mtr-miR160c. Acti-
vation of miR160 during early symbiotic stages was not 
observed in nodulation signaling or autoregulation mutants 
[41] (Fig.1 and Table 1).

In terms of grain development, the miR396 family, which 
targets Growth-Regulating Factor (GRF) genes such as 
GRF1, GRF6, and GRF9, plays a significant role in wheat 
grain filling. Seventeen miR396 members have been identi-
fied, including five unique haplotypes, such as miR396a and 
miR396n, which are absent in other species. These haplo-
types demonstrate distinct Gene Ontology (GO) enrichment 
functions and are integral to grain development, with poly-
ploidization driving their diversification and enhancing the 
functional networks involved in grain filling [42] (Fig.1 and 
Table 1). Mutations in MIR396e and MIR396f lead to larger 
grains and altered plant structure, enhancing grain yield 
by promoting leaf elongation and gibberellin biosynthesis 
[43]. Additionally, miR160 negatively regulates OsARF18, 
affecting rice growth, development, and auxin signalling, 
with overexpression of OsARF18-resistant versions lead-
ing to various growth defects [44]. miR396 regulates flower 
and fruit growth by targeting SlGRFs, and overexpression 
in transgenic lines results in larger flowers and fruits [45]. 
Finally, miR396 regulates grain size through OsGRF8, 
with target mimicry of OsmiR396 increasing grain size and 
improving yield. OsmiR408, regulated by OsGRF8, also 
plays an essential role in grain size regulation [46] (Fig.1 
and Table 1).

In shoot apical meristem (SAM) development, AGO10 
sequesters miR165/166, ensuring proper SAM establishment 
[47]. In Larix leptolepis, overexpression of miR166a reduces 
somatic embryo (SE) formation, affects shoot apical meris-
tem (SAM) development, and enhances rooting and lateral 
root formation. miR166a down-regulates LaHDZ31-34 in 
transgenic lines and upregulates WOX expression, suggest-
ing an indirect role in SAM development. This indicates that 
miR166a influences both rooting and SAM formation [48] 
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(Fig.1 and Table 1). In Malus domestica, overexpression 
of miR166a affects spur-type growth, shoot apical meris-
tem (SAM) development, and increases rooting and lateral 
root formation. miR166a down-regulates LaHDZ31-34 and 
upregulates WOX expression, suggesting an indirect role in 
SAM development [49] (Fig.1 and Table 1). Leaf polarity 
and adaxial-abaxial patterning are regulated by a complex 
interplay between miR166, miR390, and tas3-derived ta-
siRNAs in maize. Accumulation of miR166 is controlled by 
the transcription of its precursor loci and further modulated 
by tas3-derived ta-siRNAs, which influence leaf polarity. 
Tas3-derived ta-siRNAs restrict miR166 expression to the 
adaxial side of the leaf, facilitating the establishment of the 
abaxial side. MiR390 acts as an upstream determinant, ini-
tiating the biogenesis of tas3 ta-siRNAs and governing the 
spatial accumulation of miR166. While miR390 accumulates 
in the adaxial region, miR166 expression is spatially regu-
lated at both the precursor transcription and ta-siRNA bio-
genesis stages [50]. In Glycine max, miRNAs regulate key 
developmental processes. miR166 and miR4422a influence 
shoot apical meristem and leaf development, with miR166 
showing distinct spatial patterns and miR4422a localizing 
to the nucleus [51] (Fig.1 and Table 1).

miR167 is crucial for proper auxin response and rice 
growth. It regulates auxin signalling by targeting OsARF6, 
OsARF12, OsARF17, and OsARF25, and its overexpres-
sion results in reduced plant stature and tiller number 
[52]. miR167 promotes lateral root and nodule formation 
by repressing GmARF8a and GmARF8b, especially after 
Bradyrhizobium japonicum inoculation [53]. miR169d 
triggers early flowering by repressing AtNF-YA2 and FLC 
expression, independent of environmental factors [54]. gma-
miR156a promotes juvenile development by downregulating 
SPL genes, while gma-miR172a accelerates flowering by 
regulating AP2-like transcription factors during the repro-
ductive phase [55] (Fig.1 and Table 1).

In Hordeum vulgare, miR172 regulates lodicule develop-
ment and floret opening by targeting the Cly1 gene. miR172a 
is the most abundant isomer in immature spikes. A mutation 
in miR172’s target site reduces CLY1 protein levels with-
out affecting transcript levels. miR172 and Cly1 co-localize 
in the lodicule primordium, suggesting interaction. A Hv-
miR172a mutant leads to small lodicules and failed growth, 
demonstrating its role in cleistogamy regulation [56]. Over-
expression of miR172 variants in Brassica species acceler-
ates flowering but causes floral organ defects. Five miR172 
clusters (a–e) were identified, with Brassica species show-
ing higher retention of miR172 compared to its target gene 
AP2. Overexpression of miR172b, miR172d, and miR172e 
accelerates flowering, with miR172e causing slight earliness 
in B. juncea and altering floral organ formation, indicat-
ing target gene divergence [57]. In Solanum lycopersicum, 
miR172 regulates floral organ identity, with mutations in 

miR172c and miR172d causing abnormalities in petals and 
stamens. Seven miR172 genes produce four species, with 
miR172c and miR172d being most abundant during flower 
development. Co-targeting these genes via CRISPR-Cas9 
results in graded floral abnormalities [58]. In Actinidia deli-
ciosa, miR172 negatively regulates AP2 to specify floral 
organ identity. In the ‘Pukekohe dwarf’ mutant, increased 
AP2 transcript levels and absence of miR172 in developing 
whorls cause multiple perianth whorls and petaloid features. 
AP2 in kiwifruit is homologous to AP2/AP2-like genes in 
other plants, with splice variants detected, including one 
lacking the miR172 target site. Additionally, AP2 regulates 
dormancy, accumulating in axillary buds before and after 
budbreak [59] (Fig.1 and Table 1).

For fruit morphology, miR159 regulates fruit growth by 
repressing SlGAMYB2, which modulates the GA biosynthe-
sis pathway, influencing fruit size and shape. Overexpression 
of SlGAMYB2 leads to larger fruits, while loss of function 
results in smaller, elongated fruits [60]. miR159 also affects 
ovary development and fruit set by modulating auxin and 
gibberellin pathways, while overexpression leads to parthe-
nocarpy [61]. In Fortunella hindsii, overexpression of csi-
miR159a or DUO1 knockout results in seedless, small fruits 
and pollen abortion due to arrested pollen development and 
abnormal starch metabolism. Cross-pollination experiments 
confirm DUO1 as the key target of miR159a in regulating 
male sterility. DAP-seq and RNA-seq identify YUC2/YUC6, 
SS4, and STP8 as downstream targets of DUO1, involved 
in auxin signalling, starch metabolism, and sugar transport. 
The miR159a-DUO1 module plays a crucial role in pollen 
development and male sterility in citrus [62]. In Vitis vin-
ifera, VvmiR159s regulate floral development in response 
to GA by targeting Vv-GAMYB. VvmiR159c shows peak 
expression before flowering, with its levels inversely corre-
lated to VvGAMYB. The GA–DELLA–VvmiR159c–VvG-
AMYB module mediates parthenocarpy, offering insights 
for seedless grape breeding [63] (Fig.1 and Table 1).

Epigenetic regulation of ncRNAs has also been shown to 
play an important role. For example, the epigenetic regula-
tion of miR396 impacts both vegetative phase transitions 
and flowering time, emphasizing the complex regulation 
of plant development by ncRNAs [64] (Fig.1 and Table 1). 
Additionally, miR396 negatively regulates leaf size and pro-
motes early flowering by targeting growth-regulating factors 
(GRFs) [65].

Role of ncRNAs in plant stress responses

Extensive research has delved into the regulatory functions 
of non-coding RNAs in diverse stress scenarios within the 
plant kingdom. Stress signals activate many regulatory ncR-
NAs, which interact with target transcripts to coordinate 
important stress-responsive pathways [66]. A study used 
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miRNA chips covering almost all known miRNAs in Arabi-
dopsis to analyse the expression of 117 miRNAs in salin-
ity, drought, and low temperatures [67]. Seventeen stress-
responsive miRNAs were detected. Their expression patterns 
were validated through analysis, which included studying the 
cis-regulatory elements in their promoter sequences. Sunkar 
et al. developed a library of small RNAs from Arabidopsis 
seedlings. The seedlings were subjected to a range of abiotic 
stresses, such as high salinity, dehydration, cold and abscisic 
acid [68]. They discovered several novel miRNAs that are 
responsive to abiotic stress. For instance, treatments with 
ABA, cold, dehydration, and salinity elevated the expres-
sion of miR393. Under usual stress conditions, there was 
an insignificant upregulation of miR402 and miR397b. 
Cold stress was the sole treatment that selectively induced 
miR319c; the other treatments did not. On the other hand, 
miR389a was downregulated in response to all stresses. 
These results imply that stress-induced miRNAs either target 
positive regulators of processes that are impeded by stress 
or negative regulators of stress responses. A few recently 
discovered miRNAs showed expression patterns specific to 
particular tissues or developmental stages (see Fig. 1).

A comprehensive analysis of differentially 
modulated non‑coding RNAs in stress 
responses of field crops

Rice (Oryza sativa)

According to a study profiling microRNA expression in 
drought-stressed rice (Oryza sativa) using oligonucleotide 
microarrays, miR-169g is the only member of the miR-169 
family that exhibits a significant increase in response to 
drought. Remarkably, this upregulation of miR-169g was 
most pronounced in the roots (Table 2) [69]. Likewise, Zhou 
et al., [70] used a microarray platform to thoroughly investi-
gate microRNA expression in rice affected by drought stress 
throughout different developmental stages, ranging from 
tillering to inflorescence formation. 16 microRNAs were 
shown to be highly downregulated in response to drought 
stress in their study (miR529miR1035, miR396, miR159, 
miR168, miR171, miR39, miR319, miR170, miR1088, 
miR408, miR172, miR896, miR1030, miR156, miR1050). 
In contrast, 14 microRNAs (miR901, miR1125, miR169, 
miR851, miR319, miR845, miR171, miR854, miR896, 
miR474, miR395 miR903, miR1026, and miR159) consid-
erably upregulated during the drought stress (see Table 2, 
Fig. 2). These findings underscore the complex and dynamic 
nature of miRNA responses to drought stress in rice and 
offer insightful information about the regulatory systems that 
allow plants adapt to environmental challenges [70]

In another investigation, RNA-seq studies of rice leaf 
subjected to drought stress uncovered distinct expression 
patterns of noncoding RNAs. This analysis identified 98 
long noncoding RNAs (lncRNAs) and their associated 
antisense transcripts, some of which responded to drought 
stress. These lncRNAs exhibited significant regulation under 
drought conditions, with their expression levels inversely 
correlated with those of putative target genes. A total of 
98 longer than 1 kb drought-responsive lncRNAs had been 
identified, including their corresponding antisense tran-
scripts. Of these, 31 were upregulated, and 67 were down-
regulated. Two natural antisense transcripts (NATs) were 
identified that showed inverse correlations with their target 
genes. Specifically, NAT Os02g0250700-01 exhibited an 
inverse correlation with its target gene Late embryogenesis 
abundant protein (LEA), and NAT Os02g0180800-01 exhib-
ited an inverse correlation with its target gene cinnamonoyl-
CoA reductase) [71] (Table 2, Fig. 2).

Furthermore, Dongxiang wild rice (DXWR), renowned 
for its exceptional drought resistance, is highly valued as 
a key genetic resource for developing drought-resistant 
rice varieties. A study discovered that 1092 lncRNAs 
expressed differentially when exposed to drought stress. 
MSTRG69391 was the most significantly upregulated 
lncRNA, followed by MSTRG41712 and MSTRG68635. On 
the contrary, MSTRG65848, along with MSTRG27834 and 
MSTRG46301, showed the most significant downregulation 
among all lncRNA (Table 1). The results of these investiga-
tions improve our knowledge of the biology of lncRNAs. 
Additionally, they suggest potential candidates regulators 
that could possibly be used to genetically improve rice cul-
tivars’ resilience to drought [72].

Salinity is a major abiotic stress, affecting approximately 
6% of the global arable land. According to a study, rice 
miRNAs responsive to increased salt are miR-169g and 
miR-169n (o) [73]. Within a miRNA cluster, miR-169n and 
miR-169o are situated 3,707 base pairs apart. The study 
also revealed that these miR-169 members specifically tar-
get and cleave NF-YA gene Os03g29760, which encodes a 
CCAAT-box binding transcription factor that regulates the 
transcription of various genes (Table 1, Fig. 2). Furthermore, 
several members of the ath-miR-169 family were found to 
be upregulated in response to high salinity.

Cold stress is a significant abiotic factor that adversely 
affects rice yields by damaging tissue and impeding 
growth. A recent study identified 18 rice miRNAs respon-
sive to cold stress through microarray analysis. Among 
the 18 identified cold-responsive miRNAs, most exhib-
ited downregulation, with notable changes observed in 
the miR-167 and miR-319 families. The expression pat-
terns of these miRNAs varied over time: some, such as 
miR-166k and miR-166m, were initially upregulated but 
returned to baseline, while others, like miR-1868 and 
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Table 2   Differentially modulated non-coding RNAs in stress responses of important field crops

Crop Regulated ncRNAs Stress condition Reference

Rice miR-169 g Drought [69]
miR901, miR169, miR1125, miR1126, miR156, miR851, miR474, miR170, miR171, 

miR172, miR396, miR397, miR408, miR896, miR1030, miR1035, miR1050, 
miR1088, and, miR159, miR159, miR854, miR319, miR171, miR319, miR395, 
miR845, miR896, miR168, miR903, miR1026 and miR529

Drought [70]

NAT Os02g0180800-01 and NAT Os02g0250700-01 Drought [71]
MSTRG41712, MSTRG27834, MSTRG46301, MSTRG68635, MSTRG65848 and 

MSTRG69391,
Drought [72]

miR-169 g and miR-169n (o) Salinity [73]
miR319b, miR167e, miR167g, miR167i, miR167d miR319a,, miR167f, miR167j, 

miR167h
Cold [74]

miR604, miR606, miR601, miR603,
miR602

Cadmium stress [75]

miR528-ASCORBATE OXIDASE (AO) Virus defence [77]
Identified 1197 differentially expressed genes (DEGs), 131 lncRNAs (DELs), and 52 

miRNAs (DEMs)
Significant expression changes in response to glyphosate, suggesting that SPL12, osa-

miR156a, and certain lncRNAs play a role in glyphosate tolerance

Herbicide stress [78]

Wheat miR2118, miR5049, miR408, miR396, miR160, miR1858, miR172, miR395, miR166, 
miR159, miR472, miR477, miR482, and miR16

Drought [80]

miR2012, miR396, miR827, miR159, miR159, miR2013, miR2006, miR393, miR444, 
miR2005, miR2001, miR827, miR2001, miR17, miR2008, miR156, miR164, and 
miR2011

Erysiphe graminis [79]

miR160, miR172, miR166, miR827, miR159, miR156, miR2005, miR169, and miR168 Heat stress [79]
Identified 5,309 long non-coding RNAs, 1,574 fusion genes, and 739 transcription fac-

tors
Water logging [81]

Maize 7245 lncRNAs were identified, including 637 nitrogen-responsive lncRNAs Nitrogen response [82]
miR164-MYB, miR156-SPL, miR159-MYB, miR160-ARF, and miR164-NAC Drought [83]
Identified 6,099 long non-coding RNAs (lncRNAs), with 3,190 differentially expressed Water logging [84]

Barley Hvu-miR156, Hvu-miR166, Hvu-miR171, and Hvu-miR408 Drought [85]
CNT0018772
CNT0031477

Salinity [86]

50 miRNAs responsive to aluminium stress Metal stress [87]
Chickpea 4446 differentially expressed lncRNAs Salinity [88]

miRNAs: miR5213, miR5232, miR2111, miR2118 and miR530 Fusarium oxysporum [89]
miR167, miR168, miR171, miR390, miR2118, nov-miR8 and nov-miR2 Salinity stress [90]

Soybean miR-Seq15, miR-Seq13, miR166f, miR169f-3p, miR397ab, miR-Seq11, miR1513c, and 
miR166-5p

Drought stress [92]

miR166f, miR397ab, miR-Seq13, miR169-3p miR482bd-3p, miR1513c, miR166a-5p, 
miR4415b and miR-Seq15ab

Rust stress

Identified 20 conserved miRNA families (gma-miR156 a,b,c,d,e, gma-miR159b,c, 
gma-miR160, gma-miR162, gma-miR164, gma-miR166ab, gma-miR167a,b,c, gma-
miR168, gma-miR169b,c, gma-miR171a, gma-miR172a,b, gma-miR319a,b,c, gma-
miR390a,b, gma-miR393, gma-miR396a,b, gma-miR397)

Identified 35 novel miRNA families (gma-miR1507, gma-miR1508, gma-miR1509, 
gma-miR1510, gma-miR1511, gma-miR1512, gma-miR1513, gma-miR1514a, 
gma-miR1514b, gma-miR1515, gma-miR1516, gma-miR1517, gma-miR1518, 
gma-miR1519, gma-miR1520a, gma-miR1520b, gma-miR1520c, gma-miR1520d, 
gma-miR1521, gma-miR1522, gma-miR1523, gma-miR1524, gma-miR1525, 
gma-miR1526, gma-miR1527, gma-miR1528, gma-miR1529, gma-miR1530, 
gma-miR1531, gma-miR1532, gma-miR1533, gma-miR1534, gma-miR1535, gma-
miR1536, gma-miR171b, gma-miR482)

Bradyrhizobium japoni-
cum inoculation /
nodulation

[91]

Common bean 49 novel miRNAs and 120 known miRNAs were identified Drought [94]
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miR-1850, showed transient upregulation followed by 
downregulation. miR-1435 and miR-535 demonstrated 
sustained positive induction at 24 hours. Downregulated 
miRNAs, including miR-167a and miR-319a, experienced 
significant reductions after 12 hours, with others showing 
declines after 6 hours. Early downregulation was observed 
in miR-444a, miR-1320, miR-1876, miR-171a and miR-
156k after 1 hour. Overall, these findings highlight the 
dynamic response of rice miRNAs to cold stress, shedding 
light on the regulatory processes that underlie rice’s ability 
to adapt to cold stress (Table 2, Fig. 2) [74].

Additionally, to explore novel miRNAs regulated by 
heavy metal stress, a study created a small RNA library from 
rice seedlings subjected to toxic concentrations of cadmium 
(Cd2⁺). Sequencing and analysis of the library revealed 19 
novel miRNAs belonging to six different families. The study 
emphasized the distinct expression patterns of rice miRNAs 
in response to Cd exposure in both leaves and roots. Spe-
cifically, miR603, miR602, and miR601 were found to be 
upregulated in the roots, whereas miR602 and miR606 were 
downregulated in the leaves. Furthermore, miR604 exhibited 
reduced levels in the roots (Table 2, Fig. 2) [75].

Beyond regulating stress responses through miRNA-
target modules in plants, evidence supports their involve-
ment in biotic stress responses triggered by bacteria, fungi, 
viruses, and insects [76]. The miR528-Ascorbate oxidase 
(AO) module is critical in boosting antiviral responses in 
rice viral defence. After infection with rice stripe virus 
(RSV), miR528, in conjunction with AGO18, enhances 
ascorbate oxidase (AO) activity. This increase in AO activ-
ity results in higher levels of basal reactive oxygen species 
(ROS), which bolsters the plant’s defence mechanisms 
against the virus (Table 2) [77].

Glyphosate has become an integrated component of weed 
management in crops. An interesting study explored the 
molecular responses of rice to glyphosate stress, focusing 
on miRNAs, lncRNAs, and mRNAs [78]. The non-trans-
genic glyphosate-tolerant germplasm CA21 was treated 
with glyphosate, and high-throughput sequencing identified 
1197 differentially expressed genes (DEGs), 131 lncRNAs 
(DELs), and 52 miRNAs (DEMs). The study found that 
SPL12 was a target of osa-miR156a_L+1, and a lncRNA-
miRNA-mRNA regulatory network was established. The 
results showed significant expression changes in response 

Fig. 2   Atlas of ncRNAs showing their functional diversity in field 
crops (cereals, pulses and legumes): Rice, wheat, maize, barley, 
chickpea, soyabean and common bean, respectively (from left to 

right). The tagged ncRNAs (* brown colored) have been functionally 
validated, primarily using overexpression and knockout/ knockdown 
studies
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to glyphosate, suggesting that SPL12, osa-miR156a, and 
certain lncRNAs play a role in glyphosate tolerance. These 
findings contributed to the development of glyphosate-tol-
erant rice varieties.

Wheat (Triticum aestivum L.)

In an early study small RNA libraries were created from 
wheat leaves to investigate the role of miRNAs in regu-
lating wheat’s response to powdery mildew infection and 
heat stress [79]. The study identified miRNAs with distinct 
expression patterns in response to powdery mildew, with 
some specific to susceptible or resistant lines and others 
affecting both. Validation through northern blotting sup-
ports the sequencing results and underscores the role of 
these miRNAs in wheat’s defense mechanisms. Solexa high-
throughput sequencing was employed to discover 153 miR-
NAs, which were identified in 51 known and 81 unknown 
families. Of these, it was found that 12 miRNAs responded 
to heat stress, and 24 miRNAs responded to powdery mil-
dew infection. According to the study, novel wheat miRNAs 
may regulate 149 target genes (Table 2, Fig 2). Northern blot 
analysis confirmed that miR156 was downregulated in both 
genotypes, miR164 in JD8-Pm30 only, and miR393 in JD8-
Pm30 but not JD8 [79]. In the same study, for heat stress 
analysis, miR172 decreased significantly while, miR168, 
miR2005, miR159, miR160, miR156, miR169, miR827and 
miR166 were upregulated, with miR168 showing the high-
est increase of 2.9-fold. Northern blot analysis validated the 
expression patterns of 9 miRNAs in TAM107 and the heat-
susceptible Chinese Spring (CS) genotype. Furthermore, 9 
miRNAs were found to be co-regulated by both powdery 
mildew infection and heat stress, with miR827 and miR2005 
upregulated in response to both stressors, suggesting their 
potential role in managing both abiotic and biotic stress in 
wheat [79]

Additionally, a study investigated drought stress-respon-
sive miRNAs in bread wheat (Triticum aestivum cv. Sivas 
111/33) using miRNA microarray screening. The analysis 
revealed that distinct expression patterns of these miRNAs 
and their target transcripts were identified between wheat 
cultivars that are drought-tolerant and those that are drought-
sensitive. Notable drought-responsive miRNAs included 
miR396, miR1858, miR160, miR169, miR172, miR395, 
miR166, miR2118, miR159, miR472, miR477, miR482, 
miR408, and miR5049. Regulatory network analysis high-
lighted that miR395 targets multiple transcripts, while 
miR159 and miR319 share several target genes (Table 2, 
Fig. 2) [80]

Waterlogging impacts wheat production, and PacBio 
SMRT combined with Illumina sequencing has been used to 
study its genetic regulation. The analysis of two wheat cul-
tivars, XM55 and YM158, identified 5309 long non-coding 

RNAs, 1574 fusion genes, and 739 transcription factors. 
Illumina sequencing of waterlogged and control plants 
revealed 6829 differentially expressed genes (DEGs), with 
photosynthesis-related genes downregulated, and steroid 
biosynthesis and plant hormone signaling genes upregulated. 
The two cultivars exhibited different genetic responses to 
waterlogging, offering insights into the molecular breeding 
of waterlogging-tolerant wheat [81].

Maize (Zea mays)

In maize, a critical crop cultivated in various environments, 
research into responses to stresses such as nitrogen (N) defi-
ciency and drought has focused on regulatory molecules 
including lncRNAs and miRNAs. A study on N-deficiency 
stress investigated intergenic and intronic lncRNAs in maize 
B73 leaves at the V7 growth stage using deep sequencing. 
This analysis identified 7245 lncRNAs, with 637 being 
responsive to nitrogen deficiency and displaying distinct 
expression profiles. Expression network modeling revealed 
that these nitrogen-responsive lncRNAs were primarily 
grouped into one of three co-expressed modules (Table 1). 
This enriched module contained genes primarily involved in 
NADH dehydrogenase activity, oxidative phosphorylation, 
and nitrogen compound metabolism [82].

In a study analyzing miRNome in two maize inbred lines 
with different drought tolerances, 11 miRNAs uniquely 
responded to drought in the drought-tolerant line H082183, 
while 34 miRNAs were specific to the drought-sensitive line 
Lv28 in leaf tissues. In root tissues, 19 miRNAs in H082183 
and 23 miRNAs in Lv28 uniquely responded to drought. 
Expression analysis of miRNA-mRNA modules showed 
negative regulatory interactions for miR160-ARF, miR164-
MYB, miR156-SPL miR164-NAC and miR159-MYB. The 
miR164-MYB and miR164-NAC modules in H082183 
regulated drought response in an ABA-dependent manner, 
whereas miR156-SPL and miR160-ARF modules in Lv28 
were associated with the suppression of metabolic processes 
in drought-exposed leaves (Table 2, Fig. 2) [83].

A recent study on hypoxia-related regulatory network in 
maize under waterlogging identified 6099 long non-coding 
RNAs (lncRNAs), with 3,190 differentially expressed, along 
with protein-coding genes involved in key metabolic and 
hypoxia response pathways, such as glycolysis and methio-
nine metabolism. The study also highlighted enriched tran-
scription factor families (AP2-EREBP, bZIP, NAC, bHLH, 
MYB) and identified co-expression of lncRNAs with genes 
linked to waterlogging tolerance [84].

Barley (Hordeum vulgare)

Barley shows considerable genetic variation in how it 
responds to different abiotic stresses. A study on barley’s 
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response to dehydration identified 28 novel miRNAs across 
18 families, with differential expression observed in leaf and 
root tissues under stress conditions [85]. Key microRNAs 
(miRNAs) like Hvu-miR408, Hvu-miR156, Hvu-miR171, 
and Hvu-miR166 were found to exhibit significant responses 
to dehydration stress (Table 2, Fig. 2). To investigate their 
role further, a modified 5′ RLM-RACE (RNA Ligase-
Mediated Rapid Amplification of cDNA Ends) technique 
was employed, which allowed for the retrieval of seven dis-
tinct cleaved miRNA transcripts from leaves under drought 
stress. Complementary in silico analysis predicted a total 
of 15 potential EST (Expressed Sequence Tag) targets that 
might be regulated by these miRNAs. Expression analy-
sis revealed a positive correlation between these miRNAs 
and the suppression of their target mRNA transcripts under 
dehydration stress [85].

Salinity is a major stressor that limits plant productivity 
globally. Barley, however, shows notable adaptability to salt 
stress. A study examining four barley genotypes (Hasat, Bey-
sehir 99, Konevi 98, and Tarm 92) under 150 mM salt stress 
during a 3-day germination period revealed that lncRNA 
CNT0018772 was down-regulated in both roots and shoots 
of all genotypes, indicating a common stress response [86]. 
Conversely, lncRNA CNT0031477 was down-regulated in 
most genotypes but up-regulated in Tarm 92. This unique 
expression pattern in Tarm 92 may contribute to its enhanced 
salt tolerance (Table 2).

Although generally more sensitive to aluminum (Al) 
toxicity than other cereals, Barley shows significant geno-
typic variation in Al tolerance. A well-known mechanism 
of Al tolerance in barley is Al exclusion, facilitated by the 
Al-activated citrate transporter 1 (HvAACT1). However, 
recent research found that the expression of HvAACT1 and 
the secretion of citrate and other organic acids did not fully 
explain the difference in Al tolerance between the Al-toler-
ant wild barley XZ29 and the Al-sensitive cultivated barley 
Golden Promise. To investigate further, a study constructed 
eight small RNA libraries from the roots of barley genotypes 
under both control and Al-treated conditions. Deep sequenc-
ing of these libraries identified 342 miRNAs in total, with 
296 being common to both genotypes. Comparative analy-
sis identified 50 miRNAs responsive to Al stress (Table 2, 
Fig. 2), including some uniquely expressed in XZ29 and 
potentially linked to Al tolerance [87].

Chickpea (Cicer arietinum L.)

Chickpea (Cicer arietinum L.) is an important legume 
known for its high protein and fiber content. A recent study 
focused on identifying long non-coding RNAs (lncRNAs) 
induced by salt stress in chickpea roots and exploring their 
regulatory roles. The research uncovered 3452 novel lncR-
NAs across all eight chickpea chromosomes. Comparing 

salt-tolerant cultivars (ICCV 10, JG 11) to salt-sensitive 
cultivars (DCP 92-3, Pusa 256), differential expression 
analysis revealed 4446 lncRNAs with modified expres-
sion under different salt treatments. Of these, 373 lncR-
NAs were expected to have cis-regulatory influence over 
the genes they target. Furthermore, it was shown that 80 
distinct lncRNAs interacted with 136 distinct miRNAs as 
endogenous target mimics (eTMs), indicating their role 
in the regulatory network for the response to salt stress. 
Functional analysis identified the roles of these lncRNAs 
in the regulation of genes associated with salt stress, 
including aquaporins (e.g., TIP1-2 and PIP2-5), potassium 
transporters, transporter family genes, serine/threonine-
protein kinases, and different transcription factors (e.g., 
WRKY, AP2, bZIP, ERF, NAC and MYB). Addition-
ally, about 614 lncRNA-derived simple sequence repeats 
(SSRs) were shown to be unique molecular markers for 
chickpeas that had greater efficacy and specificity (Table 2, 
Fig. 2) [88].

A research investigation was done to identify chickpea 
miRNAs linked to biotic and abiotic stresses, focusing 
on increasing soil salinization and Fusarium oxysporum 
f.sp. ciceris caused wilt disease. Three libraries were cre-
ated from chickpea seedlings, one treated with salt, one 
untreated, and one infected with fungus, in order to study 
miRNA responses. In addition to 59 new miRNAs and 
their star sequences, the study found 122 conserved miR-
NAs from 25 distinct families. Four miRNAs specific to 
legumes were found in all libraries: miR2118, miR5232, 
miR5213, and miR2111 (Table 2). Notably, miR530 was 
significantly upregulated in response to fungal infection 
and targeted genes encoding zinc finger and microtubule-
associated proteins (Fig. 2) [89].

Drought stress is a serious challenge to the sustainable 
growth and productivity of legumes such as chickpea. A 
study comparing the drought-tolerant cultivar Pusa 362 
with the drought-sensitive SBD377 revealed that root 
volume was similar between the two genotypes, sug-
gesting that drought tolerance in Pusa 362 may involve 
mechanisms beyond root traits. The study identified 16 
validated miRNAs, among which miR171, miR167and 
miR168 were significantly upregulated in the roots of Pusa 
362. These miRNAs regulate key components of drought 
stress responses, including scarecrow-like transcription 
factors, WD-repeat proteins, and auxin response factors. 
In the shoots of Pusa 362, miR390 and miR2118 were also 
increased. The newly identified miRNAs with the high-
est expression levels in Pusa 362 were nov_miR8 in the 
roots and nov_miR2 in the shoots. Surprisingly, nov_miR8 
targets a gene encoding laccase, whilst nov_miR2 targets 
GMP synthase (Table 2, Fig. 2) [90].



	 Molecular Biology Reports          (2025) 52:249   249   Page 18 of 27

Soyabean (Glycine max L.)

An early study in soybean inoculation with Bradyrhizobium 
japonicum for nodulation identified 20 conserved, and 35 
novel miRNA families in its roots [91]. A subsequent study 
used Solexa technology to sequence eight small RNA librar-
ies from various soybean types, including drought-sensitive 
and drought-tolerant seedlings and rust-susceptible and 
rust-resistant varieties, under both stressed and unstressed 
conditions. This sequencing revealed 256 miRNAs, com-
prising 24 novel families, six conserved families, and 22 
known soybean families. miR397ab, miR166-5p, miR1513c, 
miR169f-3p, and miR-Seq13 were upregulated in drought-
sensitive plants and downregulated in drought-tolerant ones. 
Under pathogen stress, miR-Seq13, miR397ab, miR166a-5p, 
miR169-3p, and miR166f were downregulated in susceptible 
plants but stable in resistant ones. miR-Seq07 was downreg-
ulated in both genotypes during rust infection, miR-Seq11 
decreased in susceptible plants post-inoculation, and miR-
Seq15ab was downregulated in susceptible plants but upreg-
ulated in resistant ones under stress [92] (Table 2, Fig. 2).

Common bean (Phaseolus vulgaris)

Legumes like common beans are crucial globally due to their 
high protein content and caloric value. Common bean yields 
are severely threatened by drought stress. However, research 
into microRNAs in Phaseolus vulgaris has been relatively 
limited. The first identification of miRNAs in common 
beans used an in silico approach in 2008 [93]. Four small 
RNA libraries were made from common bean cultivars that 
are both drought-tolerant and drought-sensitive under both 
drought and control circumstances in order to investigate 
this. Sequencing yielded 120 recognised miRNAs and 49 
new miRNAs. Under drought stress, nine known miRNAs 
were downregulated, and seven were upregulated. Among 
the novel miRNAs, five were upregulated, and three were 
downregulated. Sixteen miRNAs that may be related to com-
mon beans’ response to drought stress were identified by 
RT-qPCR validation [94] (Table 2, Fig. 2).

Functionally characterized non‑coding RNAs 
in field crops: unravelling their role in stress 
responses

Non-coding RNAs (ncRNAs) have been functionally char-
acterized in various cereal crops in response to different 
abiotic stresses, such as drought, salinity, and cold. For 
example, OsmiR535 negatively regulates drought, salinity, 
and dehydration tolerance in rice, where its knockout lines 
enhance resistance to these stresses [95]. Cold stress toler-
ance in rice has been associated with Osa-miR319b, which 

targets transcription factors involved in cold stress responses 
[96]. Osa-MIR319a and Osa-MIR319b are involved in leaf 
morphogenesis and cold stress tolerance. Both miRNAs 
are downregulated under cold stress (4  °C) but induce 
expression of target genes OsPCF5 and OsPCF8 [97], and 
miR1320, which negatively regulates cold tolerance by 
targeting PHD17, a protein involved in the cold signalling 
pathway [98]. OsmiR156 enhances cold stress tolerance by 
targeting OsSPL3, which regulates OsWRKY71 in rice [99] 
(Table 3, fig. 2). The combination of tae-miR398 and lncR-
NAs (LncR9A, LncR117, LncR616) regulates cold tolerance 
in wheat. miR398 targets CSD1 (Copper/zinc superoxide 
dismutase), while these lncRNAs act as competing endog-
enous RNAs (ceRNAs) to indirectly regulate CSD1 expres-
sion. This regulatory mechanism enhances cold stress resist-
ance in wheat, showcasing the potential of lncRNA-miRNA 
interactions in stress adaptation [100].

miR408 plays a crucial role in drought tolerance in rice 
by targeting genes involved in blue copper proteins and other 
species-specific targets. Overexpression of miR408 in the 
drought-sensitive PB1 cultivar in rice results in improved 
vegetative growth, electron transport rate, photosynthetic 
efficiency, and dehydration stress tolerance [101]. Addi-
tionally, 83 target genes with antagonistic expression under 
drought stress were identified, highlighting miR408 as a 
positive regulator of growth and drought tolerance in rice 
(Table 3, Fig. 2). In Glycine max, miR166 regulates genes 
involved in the abscisic acid (ABA) signaling pathway, with 
ATHB14-LIKE directly activating these genes. This forms 
a feedback loop between miR166 and ATHB14-LIKE, con-
tributing to drought resistance in soybean. Drought stress 
represses miR166 accumulation, leading to upregulation 
of its target gene ATHB14-LIKE. The GmSTTM166 trans-
genic line, which has optimal miR166 knockdown, exhib-
ited enhanced drought tolerance without compromising yield 
[102]. Another vital miRNA, Gma-miR398c, negatively reg-
ulates drought tolerance in soybean by targeting peroxisome-
related genes involved in reactive oxygen species (ROS) 
scavenging. Overexpression of gma-miR398c in Arabidop-
sis thaliana results in reduced germination, increased leaf 
water loss, and decreased survival under drought condi-
tions. In soybean, overexpression of gma-miR398c causes 
impaired ROS scavenging, higher electrolyte leakage, and 
increased stomatal opening compared to miR398c knockout 
and wild-type plants under drought stress [103]. In barley, 
drought stress accelerates flowering through two miR172b 
isoforms. hvu-miR172b-3p promotes flowering by cleaving 
AP2 genes, while hvu-miR172b-5p increases trehalose-
6-phosphate synthase, boosting trehalose content for osmo-
protection. After rewatering, trehalose levels decline, high-
lighting its role in stress mitigation and flowering induction. 
These modules work together to coordinate osmoprotection 
and flowering under drought stress [104] (Table 3, Fig. 2). 
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In Cicer arietinum (chickpea), overexpression of miR166 
enhanced drought tolerance, improving photosynthesis, 
transpiration, and water-use efficiency. It increased proline 
content, SOD, peroxidase, and catalase activity, while reduc-
ing H2O2 levels. miR166 also interacted with Pseudomonas 
putida RA (PGPR) to boost drought resistance, and ATHB15 
was identified as its target via RLM-RACE. [105] (Table 3, 
Fig. 2).

The miR396b/GRF6 module enhances salt tolerance in 
rice. Transgenic rice plants with miR396b mimic (MIM396) 
and GRF6 overexpression (OE-GRF6) exhibited 48.0% and 
74.4% higher survival rates under salt stress compared to 
wild-type plants. These lines showed reduced H2O2 accu-
mulation and increased activity of ROS-scavenging enzymes 
(CAT, SOD, POD). ZNF9 was identified as a negative 
regulator of salt tolerance, while MYB3R, a downstream 
target of miR396b/GRF6, further enhanced salt tolerance, 
suggesting that the miR396b/GRF6 network could be tar-
geted to develop salt-tolerant rice with enhanced yields 
[106]. Gm-miR396a is crucial for soybean development 
and salinity tolerance. Gene-edited miR396a-GE lines, cre-
ated using CRISPR/Cas9, showed enhanced salinity toler-
ance, increased branching, higher grain yields, and improved 
growth compared to control plants. However, overexpres-
sion of pre-miR396a (Pre-miR396a-OE lines) resulted in 
developmental defects such as dwarfism, abnormal inflores-
cences, smaller seeds, larger stomata, and downregulation of 
photosynthesis-related genes [107].

In wheat, the identification of 19,000 novel lncRNAs in 
cultivars SR4 and JN177 revealed differential expression 
under alkaline (saline-alkali) stress. SR4 showed the differ-
ential expression of 5691 lncRNAs, while JN177 expressed 
5932. Knockdown of specific lncRNAs (L0760 and L2098) 
increased sensitivity to alkaline stress, while knockdown of 
L6247, L0208, and L3065 enhanced stress tolerance. The 
study also constructed lncRNA–miRNA–target-mRNA net-
works, highlighting that some lncRNAs promote tolerance 
while others increase sensitivity to stress [108] (Table 3, 
Fig. 2).

TaemiR408 plays a key role in regulating phosphate 
uptake under starvation and ABA signaling during salt stress 
in wheat. Overexpression of TaemiR408 in Nicotiana taba-
cum enhances stress tolerance, biomass, and photosynthesis, 
while also improving Pi acquisition by increasing NtPT2 
expression [109]. It also upregulates NtPYL2 and NtSAPK3 
involved in ABA signaling and osmolyte synthesis. Knock-
down of these targets impaired stress tolerance, confirming 
TaemiR408’s role in stress adaptation [110]. Tae-miR408 
targets TaCLP1, a chemocyanin-like protein involved in 
both abiotic and biotic stress responses. Overexpression of 
TaCLP1 in Schizosaccharomyces pombe enhanced growth 
under salinity and copper stress, while silencing TaCLP1 
in wheat reduced resistance to stripe rust. The contrasting 

expression patterns of TaCLP1 and tae-miR408 under Pst 
infection and high copper stress suggest that tae-miR408 is 
a key regulator of wheat stress tolerance [109]. In maize, 
phosphorus (Pi) deficiency causes miR399 upregulation, 
which targets ZmPHT1;1, ZmPHT1;3, and ZmPHT1;13 to 
regulate Pi transport. PILNCR2, a long non-coding RNA 
transcribed from the opposing strand of ZmPHT1;1, mod-
ulates the effect of miR399 by preventing its cleavage of 
ZmPHT1 mRNAs. Overexpression of PILNCR2 increases 
low-Pi tolerance, while knockdown or knockout of PILNCR2 
reduces tolerance to low phosphorus, highlighting its role in 
maintaining Pi homeostasis via regulation of miR399 [111].

TaMIR444a regulates wheat’s tolerance to nitrogen 
starvation by modulating NRT genes (e.g., NtNRT1.1-
s, NtNRT2.1) and antioxidant enzymes (e.g., NtCAT1;1, 
NtPOD1;3). Overexpression of TaMIR444a in tobacco 
improves growth, biomass, nitrogen content, photosynthe-
sis, and ROS detoxification. Transcriptome analysis identi-
fied genes involved in signal transduction, metabolism, and 
phytohormone response, highlighting miR444a as a key 
regulator of nitrogen-starvation tolerance [112]. ALEX1, a 
lncRNA, regulates disease resistance in rice by activating 
the jasmonate pathway [113].

These studies underscore the critical role of ncRNAs 
in modulating stress responses and improving tolerance to 
environmental stresses in key field crops.

Conclusion

The emerging field of plant non-coding RNAs (ncRNAs) 
underscores their pivotal role in regulating various biologi-
cal processes, yet their full potential in crop research remains 
underutilized. Despite the growing body of work, most of 
these ncRNAs have not yet been functionally evaluated in 
the context of stress. The increasing availability of refer-
ence genomes and advances in transcriptome sequencing and 
computational tools offer valuable opportunities for compar-
ative analyses, revealing ncRNA sequence similarities and 
functional conservation across species. There is a need to 
construct a ‘comprehensive genome-wide atlas’ of ncRNAs 
for crop plants, and identify ‘biomarkers for stresses’ like 
drought, salinity, cold, metal stress, nutrient stress, herbi-
cide stress, waterlogging and pathogen infections. The lack 
of specific mutant lines for ncRNAs in modal plants like 
Arabidopsis presents a challenge in their functional valida-
tion under stress. Future research should focus on developing 
mutant lines using genome-editing technologies for func-
tionally validating novel ncRNAs and identifying ‘candidate 
ncRNAs’. Such advancements could facilitate the targeted 
development of crops with enhanced resilience to abiotic 
and biotic stresses, advancing agricultural productivity and 
sustainability.
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represents 15.7% of the total global saffron imports. Saf-
fron worth US$ 38.2 million was imported to India in 2024 
to satisfy its demand, making it the world’s second-largest 
importer. Unfortunately, saffron cultivation in the traditional 
saffron-growing regions of Kashmir has faced a severe cri-
sis for over two decades, as evident from its dwindling share 
in global production (Husaini et al. 2013).

Climate change is emerging as a big challenge to saffron 
cultivation (Husaini 2014). The maximum area recorded 
under saffron crop was 5707 hectares (in 1997), with an 
estimated production of 16 tons at that time (Husaini et 
al. 2010). Several factors have led to the declining trend 
in its area and production (Husaini et al. 2013), amongst 
which climate change is the most challenging. Although the 
phenology of saffron is well defined for Kashmir, climate 
change has led to erratic weather conditions, causing varia-
tions in the onset of these developmental stages. A signifi-
cant limitation to saffron cultivation in traditional areas is 
that saffron fields are almost entirely rain-fed, with mini-
mal irrigation facilities. The total rainfall during the saffron 
growing period is usually sufficient, but its distribution is 

Background and introduction

The Union Territory of Jammu and Kashmir in western 
Himalaya is blessed with the cultivation of saffron (Crocus 
sativus var. cashmerianus Royle), which dates back to 5th 
century BC. It grows on upland karewas located at an altitude 
of 1585 to 1677 m above the mean sea level, which makes 
it the highest altitude grown saffron in the whole world. 
Although India ranks second to Iran in saffron production, 
it is twelfth among global saffron exporters. Unlike Spain, 
France and Italy, which import Iranian saffron, add value 
to it, and resell it at a higher price. India imports around 88 
tons of saffron annually to meet domestic demand, which 
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Abstract
Saffron occupies a vital place in the agricultural scenario of Jammu and Kashmir, India. India ranks only second to Iran 
in saffron production, yet it ranks twelfth among global saffron exporters. Therefore, we need to explore ways to promote 
both its production and export. Traditional saffron areas of Jammu and Kashmir are not able to meet the local demand 
within India, and therefore India imports saffron of around 88 tons per annum, causing an expenditure of US$ 38.2 million 
to the exchequer. This trend can be reversed by introducing saffron in non-traditional areas of J&K. Herein, we discuss 
the issue from the perspective of farmers of the non-traditional areas involved in saffron on-farm trials in 16 districts of 
J&K. While the environmental suitability of an area with respect to its climate is the prime requisite for growing saffron, 
however, the ‘know-how’ of farmers regarding the management practices involved in the cultivation-module of this pecu-
liar crop (saffron) is vital for its successful introduction in the non-traditional areas. Saffron cultivation involves several 
unique practices, and our study revealed a low level of knowledge among the farmers of new areas about these practices. 
However, the most encouraging observation was that the respondents expressed a willingness to grow saffron in new areas, 
provided some government-sponsored schemes are set up to support them.
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irregular, and it has now become common for saffron to face 
water stress.

The huge gap between supply and the domestic demand 
for saffron can be met by extending its cultivation to new 
sites. There have been several attempts to introduce the 
crop in non-traditional areas of northern India through eco-
logical modelling, some of which have shown promising 
results (Kumar et al. 2022). Our earlier study demonstrated 

the technical feasibility of cultivating saffron in the most 
neglected and marginal areas of the trans-Himalayan region, 
specifically in the Jehlum and Chenab valleys of Kashmir 
(Sheikh et al. 2023). Furthermore, we experimented with the 
introduction of organic saffron in kitchen gardens to meet 
the household requirements of saffron, and the results were 
encouraging (Husaini and Wani 2020). The areas receiving 
100–150 cm of well-distributed rainfall with snow in winter 
are suitable for saffron cultivation, and rains in September 
are essential for meeting the water requirement of corms for 
good flower yields. Several recent studies show that the pro-
duction of saffron through organic means is a way forward, 
and incorporating biofertilizers in its production technology 
can add further economic value to it (Magotra et al. 2021; 
Naik et al. 2024).

According to our estimate, increasing the area from the 
current (3785  ha) to a projected (12404 ha) will generate 
employment opportunities, and will increase saffron pro-
duction from 16.5 tons to 78 tons, which will fetch an addi-
tional exchequer of Rs 9 billion (Rs 900 crore). Hence, there 
is a need to popularise saffron outside the traditional belt 
and share its production technology with common people in 
semi-arid regions and areas not suitable for irrigated crops. 
The results presented are based on a study that was carried 
out in Jammu & Kashmir, in ten districts of Kashmir and six 
districts of the Jammu region. Herein, we discuss the saf-
fron diversification in non-traditional areas of J&K from the 
farmers’ perspective.

Table 1  Major crops grown at non-traditional sites and corresponding 
income generation potential
Site Major crops grown Annual 

Income 
generation

Malangpora (Pulwama) Rice, Apple, Almond, 
Saffron

High

Pombay (Kulgam) Rice, Apple Medium
Balpora (Shopian) Apple, Walnut High
Dooru (Anantnag) Oats, Rice, Mustard Low
Kulangam (Kupwara) Walnut Low
Udina (Bandipora) Wheat, Maize, Millets Low
Mirgund (Baramulla) Mulberry, Rice Low
Harran (Budgam) Vegetables Low
Shuhama (Ganderbal) Rice, Vegetables Medium
Shiva (Doda) Maize, Vegetables Low
Meer (Udhampur) Flowers, Maize, Millets Low
Mahore (Reasi) Maize, Oats Low
Gandhari (Ramban) Maize, Beans Low
Budhal (Rajouri) Fodder maize Low
Mandi (Poonch) Maize, Vegetables Low
Benhama (Ganderbal) Forest trees, Walnut Low
Shalimar (Srinagar) Vegetables, Rice High
FOH Shalimar Forest trees Medium

S. No Variables Answer Coding
1. Have you ever heard about saffron? Yes 1

No 0
2. Is saffron grown in your area? Yes 1

No 0
3. Do you know how saffron is grown? Yes 1

No 0
4. Do you know which part of saffron is marketable? Yes 1

No 0
5. Do you know how saffron is harvested? Yes 1

No 0
6. Do you consume saffron? Yes 1

No 0
7. Are you interested in growing saffron? Yes 1

No 0
8. Do you have suitable land for growing saffron? Yes 1

No 0
9. Do you feel the need of govt. sponsored scheme 

for growing saffron?
Yes 1
No 0

10. Are you satisfied with the on-field demonstration 
provided by NMHS sponsored project?

Yes 1
No 0

Table 2  Variables considered 
for the evaluation of knowledge 
about saffron and their assigned 
coding
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Interactive survey with the farmers

Eighteen (18) sites, across ten districts of Kashmir (Pulwama, 
Kulgam, Anantnag, Shopian, Budgam, Kupwara, Bandip-
ora, Ganderbal, Baramulla, Srinagar) and six districts of the 
Jammu region (Poonch, Rajouri, Udhampur, Doda, Reasi 
and Ramban) were selected for On-Farm Trials of saffron 
cultivation, and ninety farmers associated with these trials 

were randomly selected. A survey was conducted to cata-
logue traditional crops grown in these areas, the knowledge 
of farmers about saffron and their socio-economic status 
(Babu and Glendenning 2019). The farmers were catego-
rised into three income groups, viz., low income (< 20,000–
75,000/annum), medium income (75,000–1,50,000/annum), 
and high income (> 1,50,000/annum). Many temperate fruits 
are grown in the J&K orchards, including almonds, apples, 

Fig. 1  Multiple Correspondence Analysis (MCA): (a) Pot of the fre-
quency of all the variable categories; (b) Variance explained among 
different dimensions (axes) of the MCA; (c) The location of the 

answers within the response for each dependent (response) variable 
within the ordination space of the MCA

 

Variables Answers Total
Yes No

Have you ever heard about saffron? 78 12 90
Is saffron grown in your area? 9 81 90
Do you know how saffron is grown? 5 85 90
Do you know which part of saffron is marketable? 32 58 90
Do you know how saffron is harvested? 5 85 90
Do you consume saffron? 38 52 90
Are you interested in growing saffron? 74 16 90
Do you have suitable land for growing saffron? 62 28 90
Do you feel the need for a government-sponsored scheme to grow saffron? 88 2 90
Are you satisfied with the on-field demonstration provided by the NMHS-spon-
sored project?

84 6 90

Table 3  Responses of the farmers 
to the questionnaire applied
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on-field demonstration provided by the NMHS-sponsored 
project?” had different positions in the ordination space. Of 
these variables, the information corresponding to Have you 
ever heard about saffron and “Do you know how saffron is 
harvested?” did not contribute to the variance explained in 
axes 1 and 2 (Fig. 1b). The location of the answers within 
the response for each dependent (response) variable within 
the ordination space of the MCA is shown in Fig. 1c.

It is also noteworthy that there is a high correlation 
among variables indicating whether one has heard about 
saffron, whether saffron is grown in their area, whether they 
have suitable land for saffron cultivation, and the need for 
any government-sponsored scheme (Fig.  2a). This is also 
seen with the variable of “Are you interested in growing 
saffron?”, “Do you know how saffron is harvested?”, “Do 
you consume saffron?” and Do you know which part of saf-
fron is marketable cognates (Fig.  2b). Also variable, “Do 
you know how saffron is grown?” and “Are you satisfied 
with the on-field demonstration provided by the NMHS-
sponsored project?” (Fig. 2c). This indicates that only one 
variable can be selected in the future, predicting other view-
points (i.e., Are you satisfied with the on-field demonstra-
tion provided by the NMHS-sponsored project and the need 
for any government-sponsored scheme?).

Most of the variance was explained in the MCA’s first 
two axes, with axis-1 having 31.8% and axis-2 with 18.3% 
of the variance explained (total of 50.1%).

Conclusion

Growing saffron in areas which are eco-physiographically 
similar to traditional saffron growing areas of Kashmir 
seems promising and could enhance saffron production in 
Jammu and Kashmir, India. Saffron On-Farm Trials were 
set up in all ten districts of the Kashmir division and 6 dis-
tricts of the Jammu division, which had never been used for 
saffron cultivation. The project was financially supported 
under a Government of India-sponsored National Mis-
sion on Himalayan Studies initiative. One of the important 
observations was that, while the feasibility of a new area 
for saffron cultivation depends primarily on eco-physiology, 
the saffron know-how of farmers regarding the management 
practices involved in its cultivation is pivotal for the overall 
success of the crop in the non-traditional areas.

Furthermore, the survey focused on questions related to 
the saffron area, including cultivation technology, harvest-
ing, marketing, and local consumption. The study revealed 
a low level of knowledge about saffron cultivation and mar-
keting. However, respondents expressed a willingness to 

cherries, pears, peaches, walnuts, and the major cereals 
grown are rice, maize and wheat. The prevailing farming 
system, based on Maize/Wheat/Fodder farming systems, 
yields a profit of Rs 27,000 to 32,000/ha, compared to Rs 
3,22,000/ha achieved under the saffron farming system. The 
areas where saffron diversification has potential have been 
tabulated for income in Table 1. Saffron yield in the non-
traditional areas was low compared to Kashmir’s traditional 
areas. However, if saffron cultivation in these areas is scaled 
up, it may lead to almost doubling the income for the con-
cerned farmers.

A questionnaire based on ten questions was prepared 
(Table 2), and the farmers were asked to give their perspec-
tive on these (Pennings et al. 2002). All of the responses 
were given instantly in an unbiased manner. These responses 
were recorded and are summarised in Table 3. The approach 
to communication aimed at respondent farmers was mainly 
focused on awareness about saffron. According to the data 
collected in this survey, 87% of the respondents were fairly 
familiar with saffron, while 13% hadn’t even heard about it. 
Moreover, 10% of the respondents were aware that saffron 
was grown in their respective areas, while 90% were not. 
About 6% of the respondent farmers knew how saffron is 
grown, while the rest were unsure about the process. About 
36% of the respondent farmers knew which part of saffron 
is marketable, and 64% were unaware of which part of the 
saffron flower is marketable. About 6% of the respondent 
farmers knew how saffron is harvested, while the rest didn’t. 
About 42% of the respondent farmers had consumed saf-
fron, while 58% of the respondent farmers had never con-
sumed saffron in their lives. About 82% of farmers were 
interested in growing saffron, and about 69% had suitable 
land for growing saffron. More than 97% of farmers believe 
that a government-sponsored scheme is necessary to sup-
port saffron cultivation. Around 93% of farmers were sat-
isfied with the on-field demonstration provided under the 
project. The data used to measure the subjects’ perception 
of saffron are presented in Figs. 1 and 2.

A multiple correspondence analysis (MCA) was per-
formed using the collected data (Abdi and Valentin 2007). 
The plot of the frequency of all the variables is explained 
(Fig. 1a). Most of the variance was explained in the MCA’s 
first two axes, with axis-1 having 31.8% and axis-2 with 
18.3% of the variance explained (total of 50.1%) (Fig. 1b). 
The dependent variables: “Have you ever heard about saf-
fron?”, “Is saffron grown in your area?”, “Do you know how 
saffron is grown?”, “Do you know which part of saffron is 
marketable?”, “Do you know how saffron is harvested?”, 
“Do you consume saffron?”, “Are you interested in growing 
saffron?”, “Do you have suitable land for growing saffron?”, 
“Do you feel the need for the government-sponsored scheme 
for growing saffron?”, and “Are you satisfied with the 

Fig. 2  Correlation among different variables
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grow saffron under some government-sponsored scheme(s), 
as saffron is a peculiar crop with many distinctive charac-
teristics that are unique to it. Saffron introduction into new 
areas should be encouraged as it is a unique crop in terms 
of its potential and is recognised as ‘red gold’. This can 
increase the saffron area from 3785 ha to 12,404 ha, gen-
erating employment opportunities for youth. Furthermore, 
saffron production will increase from 16.5 tons to 78 tons, 
meeting 90% of the domestic demand in India, saving on 
foreign exchange and fetching an additional exchequer of 
Rs 9 billion (900 crore) for J&K.
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A B S T R A C T

Saffron (Crocus sativus L.) is a triploid sterile plant and autumnal flowering geophyte with corms. As a subter
ranean organ, the corm is susceptible to soil-borne diseases and corm rot is the most destructive disease causing 
severe yield losses. In the present study, diseased corms showing the symptoms of rot were collected from 
different saffron fields in Pulwama district, Kashmir (India), to isolate the causal pathogen. Isolations from 
diseased corms exhibiting typical symptoms of corm rot consistently were categorized into two distinct fungal 
culture types. Based on pathological and morpho-cultural characteristics, one isolate type was identified as 
Fusarium oxysporum. However, in contrast to the documented morphological characteristics of F. oxysporum, the 
second isolate type displayed notable differences, suggesting a distinct fungal identity. To confirm its identity at 
the molecular level, a multigene-based characterization approach employing internal transcribed spacer ITS 
(ITS1/ITS4), translation elongation factor 1-alpha (tef1-α), and beta-tubulin (β-tub2) was used. The phylogenetic 
analysis using a polyphasic sequencing approach, identified the causal pathogen as Fusarium acuminatum. To our 
knowledge, this is the first report of F. acuminatum from the saffron-growing region of India and the first step 
towards managing saffron corm rot in India.

1. Introduction

Crocus sativus (Iridaceae) is a bulbous perennial herb widely culti
vated globally in warm temperate regions. The vibrant crimson stigmas 
and styles of Crocus sativus flowers are utilized as a valued condiment, 
dye, and aroma, and they possess antioxidant and immense medicinal 
properties [1,2]. This species is characterized by its triploid chromo
some number and male sterility, rendering it incapable of producing 
viable seeds for reproduction. Propagation of saffron is achieved solely 
through vegetative reproduction via its corms. India is one of the few 
countries globally engaged in the commercial cultivation of Crocus sat
ivus L. Kashmirianus, with an area spanning 3674 ha and a productivity 
of 2.61 kg per hectare [3,4]. Jammu and Kashmir (J&K) is the only re
gion in India where saffron is cultivated on a commercial scale. The 
cultivation is primarily concentrated in the districts of Pulwama, which 
account for 76 % of the total saffron-growing area [5].

The area dedicated to saffron cultivation worldwide has significantly 

decreased due to a range of biotic and abiotic factors [6,7]. Corm rot, in 
particular, has been identified as a critical biotic constraint that hinders 
the successful cultivation of saffron in both established and new growing 
areas [8,9]. The disease is classified as a corm rot complex due to the 
involvement of multiple pathogens and secondary saprophytes associ
ated with the rotting of the corm. The intensive cultivation and mono
culture of saffron in the Kashmir Valley and the persistent use of 
diseased planting material have led to frequent outbreaks of corm rot 
diseases [5,10]. Corm rot primarily affects saffron crops during the 
flowering period (October–November) and the grubbing period 
(May–July). Surveys have shown that corm rot infestations are wide
spread, with nearly every saffron field in Kashmir affected [5], and 
incidence levels ranging between 70 % and 80 %. Additionally, reports 
indicate a 100 per cent disease incidence with severity ranging from 6 to 
46 per cent, leading to a drastic reduction in saffron yield in India [11].

Corm rot infections typically occur through injuries to the corms. 
Infected corms exhibit dark-brown, sunken, and irregular patches 
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beneath the scales, primarily near the root and bud regions. In severe 
cases, the entire corm may decompose into a black, powdery mass. 
Additionally, the foliage of affected plants often displays symptoms of 
die-back [5]. Corm rot is attributed to various pathogens, including 
Rhizoctonia crocorum, Phoma crocophila [5] Macrophomina phaseolina, 
Fusarium moniliforme var. intermedium, F. equiseti, Fusarium oxysporum, F. 
pallidoroseum, F. solani, Mucor sp., Penicillium sp. and Sclerotium rolfsii [5,
12–14].

Fusarium spp. are predominant pathogens causing corm rot in 
saffron, and recently, Fusarium nirenbergiae, Fusarium commune, and 
Fusarium annulatum were identified as agents of corm rot in China [15,
16]. This identification was achieved through a combination of 
morphological and cultural characteristics, along with multilocus 
sequence analysis (MLSA) using concatenated partial sequences of rpb2 
(the largest subunit of DNA-directed RNA polymerase II), tef1 (translation 
elongation factor 1-α), and the β-tubulin gene (tub2). No such molecular 
studies have been conducted on saffron corm rot in India [17].

In India, existing research reports the F. oxysporum as the causal 
organism of saffron corm rot and the identity of the pathogen was based 
on morphological characteristics and ITS sequencing [11,13], and not 
on multigene sequence analysis. The present study aimed to address this 
gap by characterizing Fusarium species associated with corm rot of 
Crocus sativus L. Kashmirianus in India. This was achieved through 
pathogenicity tests, morphological assessments, and molecular tech
niques involving DNA barcoding based on including internal transcribed 
spacer (ITS), translation elongation factor 1-alpha (tef1-α), and beta-tubulin 
(tub2).

2. Materials and methods

2.1. Field survey and sample collection

A survey was conducted in traditional saffron growing areas of 
Pulwama district Kashmir (74◦58′0″E, 34◦1′30″N, 5173 m above sea 

level), in northern Himalayan region of India during October 
2023–2024 to assess the status of saffron corm rot. The survey areas 
included the traditional saffron growing region Pampore and its 
adjoining areas (Fig. 1,Table 1). Three fields were chosen randomly from 
each village to collect the diseased samples.

2.2. Isolation and purification of corm rot pathogen

Infected plants exhibiting typical symptoms of corm rot were 
collected and the fungus associated with the diseased corms was isolated 
by tissue bit technique, purified by single spore method and maintained 
on PDA slants at 25 ± 1 ◦C [11,13].

2.3. Identification of the isolated fungus

2.3.1. Morpho-cultural characterization
The mono-conidial isolates were characterized for their morpho- 

cultural characteristics and compared with authentic descriptions [18,
19]. The colony features with respect to colour, shape and size were 
visually assessed. For the morphology of the fungus, the wet mounts in 
lactophenol and cotton blue of 15 days old culture were examined under 
a microscope and the observations concerning different morphological 
characters such as shape, colour, septation of mycelium, conidiophore 
and conidia were recorded.

2.4. Pathogenicity studies

2.4.1. In vitro pathogenicity test
The in vitro pathogenicity of the isolated fungus was established on 

healthy saffron corms following the protocol adopted by Bayona et al. 
[20]. The outer skin (tunic) of the corms was peeled off, and the peeled 
corms were disinfected with 5 % sodium hypochlorite for 10 min, fol
lowed by 70 % ethanol for 1 min. The sterilized corms were then rinsed 
three times with sterile distilled water and air-dried. Using a sterile glass 

Fig. 1. Isolated fungal pathogens responsible for causing corm rot in saffron (Crocus sativus L. Kashmirianus) and its morpho-cultural characteristics: a) Front view, b) 
Back view, c) Macroconidia and Chlamydospores of F. acuminatum (d) Sampling area in traditional saffron growing region of India.
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rod, two diametrically opposite wounds, 5 mm in diameter and 5 mm 
deep, were made on each test corm. A spore suspension (1 × 107 spor
es/ml) was prepared from the seven-day-old culture of test fungus 
grown on potato dextrose broth at 25 ◦C with shaking at 150 rpm. The 
spore suspension so prepared was used to inoculate the detached corms. 
The inoculation was made by immersing the corms in a 250 ml spore 
suspension for 24 h, while corms immersed in sterile distilled water 
served as control. Following immersion, the corms were transferred in 
sterile plastic beakers with moist absorbent cotton covering the bottom 
of the beakers, and then incubated at 25 ◦C in the dark for 25 days [20]. 
Three replicates were maintained for both inoculated and control corms. 
After incubation, the corms were cut across the two inoculation points, 
and pictures were taken. The fungus was re-isolated from the artificially 
infected corms and compared with the initially isolated and inoculated 
fungus to satisfy the Koch’s postulates.

2.4.2. In vivo pathogenicity test
The pathogenicity of the isolated fungus was also confirmed on 

potted saffron plants using the rhizosphere inoculation technique, as 
adopted by Najar et al. [21]. The soil was autoclaved to sterilize it, and 
pots were prepared for corm planting. The pots were inoculated with 10 
per cent (w/w) test fungal cultures grown on sand maize meal medium 
(90 g of sand and 10 g of maize meal), and kept for 7 days inside a 
walk-in-plant growth chamber at 25 ± 2 ◦C. Before sowing, the test 
corms were disinfected with 5 % sodium hypochlorite for 15 min and 
then rinsed three times with sterile water. The corms transplanted in 
uninoculated sterilized soil served as control. Three replicates were 

maintained for both inoculated and control corms. The pots were kept 
for 5 weeks under controlled conditions in the walk-in-plant growth 
chamber, with a light/dark cycle of 18/6 h and temperatures of 25 ◦C 
during the day and 21 ◦C at night [21,22].

2.5. Molecular characterization

The DNA was isolated from seven-day-old mycelium harvested from 
potato dextrose agar (PDA), frozen in liquid nitrogen, ground, and ho
mogenized with 2 mL pre-warmed cetyl trimethyl ammonium bromide 
(CTAB) buffer (65 ◦C, 10 min). The homogenate was incubated at 65 ◦C 
for 1 h, followed by extraction with chloroform:isoamyl alcohol (24:1). 
After centrifugation (13,000 rpm, 20 min), the aqueous phase was 
collected, and DNA was precipitated with chilled isopropanol and stored 
overnight. The DNA pellet was washed with 70 % ethanol, air-dried, and 
dissolved in TE buffer. RNA was removed using DNase-free RNase A. The 
genomic DNA bands were visualized on a 0.8 % agarose gel. The primers 
used for amplification were EF-1/EF-2 (F- CATCGAGAAGTTCGA
GAAGG: R-TACTTGAAGGAACCCTTACC), targeting the nuclear trans
lation elongation factor 1-alpha (tef1) gene; Tub2F/Tub2R (F- 
GGTAACCAAATCGGTGCTGCTTTC: R- AACCTCAGTGTAGT
GACCCTTGGC), targeting the β-tubulin gene; and ITS1/ITS4 (F- 
CTTGGTCATTTAGAGGAAGTAA: R-TCCTCCGCTTATTGATATGC), tar
geting the internal transcribed spacer ITS-region [23–26](Table 3). Poly
merase chain reaction (PCR) was performed using 5 μL PCR buffer (10X) 
1 μL of forward primer (10 μM), 1 μL of reverse primer (10 μM), 1 μL of 
dNTPs (10 mM), 2 μL of genomic DNA (2245.51 ng/μL), Taq polymerase 
0.5 μL and 39.5 μL of DNase-free water. The PCR protocol included an 
initial denaturation at 95 ◦C for 2 min, followed by 35 cycles of dena
turation at 95 ◦C for 30 s, annealing at 54 ◦C, 52 ◦C and 55 ◦C respec
tively for 30 s, and extension at 72 ◦C for 2 min. A final extension was 
carried out at 72 ◦C for 10 min [25,26].

2.6. Sequencing and phylogenetic analysis

PCR products amplified using EF-1/EF-2, Tub2F/Tub2R and ITS1/ 
ITS4 were outsourced for sequencing to Barcode Biosciences, Bangalore, 
India. Sequences were assembled to generate the consensus sequence for 
phylogeny and sequence identity matrix using BioEdit Sequence Align
ment Editor Version 7.0.9.0. The nucleotide sequences were confirmed 
through basic local alignment search tool (BLAST) analysis (http://www 
.ncbi.nlm.nih.gov/). The searches were performed against the Nucleo
tide collection (nr/nt) and restricted to sequences from type material. 
The dendrogram was constructed using the MEGA 11 (Molecular 
Evolutionary Genomics Analysis Version 7) software [27]. The se
quences were submitted to GenBank. Pairwise sequence identity 
matrices were generated using the Sequence Demarcation Tool (SDT) 
v1.2 (http://web.cbio.uct.ac.za/) to assess sequence similarity.

3. Results

3.1. Morpho-cultural characterization

Isolations from diseased corms exhibiting typical symptoms of corm 
rot consistently categorized into two distinct fungal culture types. The 
cultural and morphological characteristics of the isolates were studied 
on PDA medium in pure culture. One culture type displayed a cottony or 
floccose colony, varying in color from white to pale violet. Based on its 
morphological characteristics, particularly its coloration, this isolate 
was identified as F. oxysporum which has been previously reported as a 
causal agent of saffron corm rot (Table 1S) [5,12–14].

The second fungal culture type exhibited a distinct pink to salmon 
pigmentation with yellow edges. Concentric ring formations were 
observed on both the upper and lower surfaces, characteristic of its 
growth pattern. In contrast to the documented morphological charac
teristics of F. oxysporum, this isolate displayed notable differences, 

Table 1 
Details of the thirteen sampling sites and corm rot symptoms recorded at each 
location.

S. 
No.

Location Latitude longitude Symptoms observed

1) Pampore 34.006◦ N 74.9238◦ E Leaves turning yellow 
and drooping.

2) Khrew 34.0209◦ N 74.9998◦ E Foliage withering and 
dying.

3) Ladhu 33.9984◦ N 74.9939◦ E Foliage drooping; Small 
spots on corms 
surrounded by yellowish 
halos, soft rot and tissue 
decay with foul smell

4) Dussu 33.9985◦ N 74.9669◦ E Dieback of shoots; Corm 
disintegrating into a 
dark, powdery mass 
emitting foul smell.

5) Munpora 34.015793◦ N 74.956146◦ E Foliage withering; 
Irregular, sunken dark 
brown lesions beneath 
the corm.

6) Sambora 34.0241◦ N 74.9267◦ E Foliage withering; Deep, 
sunken brown patches 
forming under the corm.

7) Balhama 34.0329566◦

N
74.9464764◦

E
Shoots wilting and 
collapsing, with vascular 
discoloration.

8) Lethpora 33.9675◦ N 74.9647◦ E Complete drying and 
death of foliage; Corms 
turning into dark 
powdery mass.

9) Awantipora 33.9218◦ N 75.0139◦ E Foliage withering; Corm 
softening and decaying.

10) Koil 33.8782◦ N 74.9472◦ E Leaves turning yellow 
and start drooping.

11) Wayun 34.027382◦ N 74.965861◦ E Leaves yellow; Tiny 
specks on corms with 
surrounding chlorotic 
halos.

12) Barsoo 33.963921◦ N 74.978742◦ E Wilting of the shoots.
13) Konibal 34.0084◦ N 74.9485◦ E Shoots gradually wilting 

and drying out; Corms 
sunken and damp.
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suggesting a distinct fungal identity. The colony demonstrated rapid 
growth, reaching 90 mm in diameter after 14 days of incubation at 25 ±
1 ◦C. Initially, the purified culture formed abundant whitish cottony 
colonies with extensive aerial hyphae. As the culture matured, the col
ony surface developed a distinct pink to salmon pigmentation, while the 
edges remained yellow.

Microscopic examination revealed smooth, branched, and septate 
mycelium. Mycelium was smooth, branched, septate, slendrical co
nidiophores were short, simple, and measured 32.5 μm–53.5 μm in 
length and 3.5 to 5.1 width in size. The macroconidia were falcate, 
slender, and distinctly curved at the base, with 3–5 septa and measured 
23.4–52.1 μm x 4.5–6.8 μm in length and width, respectively. The 
microconidia were rare. Chlamydospores were intercalary, produced 
singly or in chains, nearly spherical, hyaline and measured 10.7–14.2 
μm in diameter (Fig. 1,Table 2). Based on these characteristics and their 
comparison with the authentic descriptions, the fungus was identified as 
the F. acuminatum [19,28]. Further studies were conducted to confirm its 
identity through molecular studies and to evaluate its pathogenic 
potential.

3.2. Pathogenicity test

Pathogenicity of the isolated fungus was established on detached 
corms under in vitro conditions and in vivo on potted saffron plants 
grown under greenhouse conditions. Symptoms were observed on 
inoculated corms and potted plants, whereas no symptom development 
was observed in control plants in both the cases (Fig. 2). The inoculated 
corms rotted and subsequently turned the white surface of corms to 
yellow and ultimately to black, resulting in the rotting and death of the 
corms after 25 days of inoculation. The inoculated potted saffron plants 
produced symptoms like chlorosis, drooping, and rolling of the leaves 
resulting in the death of foliage and subsequently rotting of the corms 
and death of the whole plant after 35 days post-inoculation. The fungus 
on re-isolation from the artificially infected tissue resembled the initially 
isolated and inoculated pathogen, satisfying Koch’s postulates (1884).

3.3. Molecular characterization

The PCR amplification of genes tef1-α, tub2 and ITS (ITS1/ITS4) from 
Fusarium generated amplicon sizes ~300bp, ~400bp and ~600bp, 
respectively (Fig. 3,Table 3). The PCR amplicons were sequenced and 
BLASTn analysis revealed the sequence similarity of 100 % with 
F. accuminatum type strain JX397865 [29] at the tef1 locus, 100 % at 

ITS1/ITS4 locus (OL832226) [30] and 99.40 % at the tub2 locus 
(ON960209) [31]. BLASTn of ITS, tef1-α, and tub2 loci sequences indi
cated similarity with the type strain of F. acuminatum, which supported 
our preliminary morphological identification of this isolate. The Se
quences obtained were deposited in GenBank, with accession numbers 
PQ319729 (ITS), PQ492270 (tef1-α), PQ492271 (tub2) (Table 3).

3.4. Phylogenetic analysis

An optimal dendrogram was constructed using MEGA 11 software v 
5.05, and different taxa were clustered together in a bootstrap test 1000 
replicates using sequences of tef1, tub2 and ITS regions that were 
compared with their respective hits retrieved from the NCBI database 
and compared with the already available F. acuminatum sequences 
(Fig. 4,Table 4). The phylogenetic analysis of the query sequences 
PQ492270, PQ492271, and PQ319729 (all fungal origin) was conducted 
to evaluate their evolutionary relationships within the Fusarium genus. 
The phylogenetic clustering revealed five distinct clusters within the 
Fusarium genus. The query sequence

Corm rot in C. sativus has increasingly restricted crop production in 
India over recent years. Observations of disease distribution suggest that 
the pathogen has spread extensively across saffron-producing regions. It 
indicates that infested corms are likely a primary source of inoculum 
[14]. The present study was initiated with the aim of isolating the 
pathogen responsible for corm rot disease in C. sativus L. Kashmirianus. 
Previous studies have reported that corm rot in saffron is caused by 
different formae specialis of Fusarium oxysporum, including F. oxysporum 
f. sp. gladioli, iridiacearum, and saffrani [40]. In the saffron-growing re
gions of the Kashmir Valley, corm rot caused by F. oxysporum and F. 
solani is considered highly destructive [5,7]. Traditionally, the identi
fication of Fusarium species has relied on morphological characteristics. 
However, distinguishing between different Fusarium species can be 
challenging [13,34,41]. Fusarium species share similar characteristics, 
and their morphological traits can be affected by factors such as culture 
media, temperature, and light. Additionally, these methods do not ac
count for intraspecific variability. Consequently, a polyphasic approach 
is required for accurate species identification. This approach integrates 
morphological, biological, and genetic characteristics to provide a 
comprehensive analysis [42–44]. Previous studies have suggested that 
combining single-locus datasets to construct multilocus phylogenetic 
trees offers greater overall support compared to single-gene phylogenies 
[45,46].

Recent advances in molecular biology and morphological surveys 
have led to the discovery of numerous cryptic species within F. oxy
sporum [15,41,47]. Consequently, the taxonomy of the genus has un
dergone significant revisions [48]. Several genomic sequences have 
been used to analyse intraspecific variability in Fusarium, the β-tubulin 
gene (β-tub2), regions of the ITS rDNA region including ITS1, 5.8 S and 
ITS4 and the translation elongation factor gene tef-1α to discriminate 
FOSC population diversity [16,35,49,50]. The tef1 locus is frequently 
chosen for taxonomic studies of Fusarium due to its single-copy nature 
and significant sequence polymorphism among closely related species 
[51,52]. β-Tubulin proteins are fundamental to cellular function, and 
their genes are highly conserved across different species, similar to other 
‘housekeeping’ genes. The β-tubulin genes display at least 60 % amino 
acid similarity between the most distantly related lineages, reflecting 
their essential role and conservation [53,54]. ITS rDNA is most 
frequently studied because of species specificity of this region and they 
are known to provide better resolution at the sub-species level and thus 
sequence analysis is a superior choice for phylogenetic studies in the 
F. oxysporum species complex [55–57]. There are no such studies on 
saffron corm rot in Kashmir, India.

In the present study, morpho-cultural identification, pathogenicity 
testing and multigene phylogenies identified F. acuminatum as the causal 
agent of corm rot in saffron fields in Pampore. Pathogenicity tests con
ducted in vivo and in vitro demonstrated that the isolate was virulent on 

Table 2 
Morpho-cultural characteristics of Fusarium acuminatum causing saffron corm 
rot.

Fungal 
propagule

Shape Color Size Septation

Colony Smooth, 
branched

Distinct pink to 
salmon 
pigmentation, 
while the edges 
were yellow

90 mm 
diameter in 
14 days

Septate

Hyphae Aerial/ 
Smooth, 
branched

Hyaline 3.20–4.20 
μm

Septate

Macroconidia Falcate, 
slender, and 
distinctly 
curved at the 
base

Hyaline 23.4–52.1 
μm ×
4.5–6.8 μm

3-5 septa

Conidiophores Cylindrical, 
short and 
simple

Hyaline 32.5–53.5 
μm ×
3.5–5.1 μm

Septate

Chlamydospores Singly or in 
chains, nearly 
spherical

Hyaline 10.7–14.2 
μm in 
diameter

–

T. Bashir et al.                                                                                                                                                                                                                                   Physiological and Molecular Plant Pathology 138 (2025) 102702 

4 



intact plants and detached corms, respectively. In vitro assays have been 
previously conducted for plant pathogenicity tests (potato, hyacinth) 
[20,58], and a similar assay was used in the present study. After 20–25 
days of inoculation with fungal culture, the F. acuminatum inoculated 
corm was completely covered with fungal mass, in contrast to the 

uninoculated control, which showed no signs of fungal infection. The 
results support the earlier reports, which recount almost the same in
cubation period in different species of Fusarium infecting corm [11,35]. 
Further, the rhizosphere inoculation of the potted saffron plants pro
duced characteristic symptoms like chlorosis, drooping, and rolling of 

Fig. 2. Pathogenicity test on Crocus sativus L. Kashmirianus plants and detached corms with fungal isolate F. acuminatum. Typical external symptoms of saffron corm 
rot were seen in plants inoculated with 35dpi a) in pots, b) roots and shoots, c, d) in corm sections inoculated with 25dpi and uninoculated controls.

Fig. 3. Molecular detection of Fusarium acuminatum by PCR using the ITS ( ITS1/ ITS-4), tef1 and tub2 primer pair sets. The purified gDNA from the Fusarium isolate 
was used as template. Lanes: L1: 100bp ladder, Lanes- a to d: gDNA amplified using ITS: Lanes e to g :gDNA amplified using tub2; Lanes h to k:gDNA amplified using 
tef1 primer pair sets and L2 : 100bp ladder.

Table 3 
Details of PCR and DNA sequencing.

Primer name Primer sequence Size of amplicon (bp) Tm (◦C) Accession numbers

ITS1 CTTGGTCATTTAGAGGAAGTAA ~600 55 PQ319729 (ITS1/ITS4) https://www.ncbi.nlm.nih.gov/nuccore/PQ319729
ITS-4 TCCTCCGCTTATTGATATGC
β-tubulin -F GGTAACCAAATCGGTGCTGCTTTC ~400 52 PQ492271 (tub2) https://www.ncbi.nlm.nih.gov/nuccore/PQ492271.1?report=fasta
β-tubulin -R AACCTCAGTGTAGTGACCCTTGGC
tef-F CATCGAGAAGTTCGAGAAGG ~300 54 PQ492270 (tef1) https://www.ncbi.nlm.nih.gov/nuccore/PQ492270
tef-R TACTTGAAGGAACCCTTACC
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the leaves, resulting in the death of foliage, subsequently rotting of 
corms and death of the whole plant after 3–5 weeks of inoculation [5].

The pathogen was re-isolated from sym s PQ492270, PQ492271, and 
PQ319729 showed close evolutionary relationships, particularly with F. 
acuminatum. PQ492270 clustered distinctly within the fungal clade, 
showing evolutionary proximity to F. acuminatum strains (e.g., 
JF496579.1, JF496581.1), with slight genetic divergence indicated by 
moderate branch lengths. Similarly, PQ492271 grouped closely with F. 
acuminatum isolates (e.g., KJ572784.1, OQ433926.1), reflecting evolu
tionary similarity while maintaining unique traits. PQ319729 formed a 
subgroup within the F. acuminatum clade (e.g., KP325408.1, 
JX114782.1, MK764994.1), indicating close genetic ties with minor 
variability. Other Fusarium species, such as F. nirenbergiae (e.g., 
MT864726.1, MT864727.1), F. oxysporum (e.g., MH485135.1, 
MH485054.1), F. commune, and F. annulatum, contributed to the 
remaining distinct clusters, highlighting genetic diversity and evolu
tionary separation from the query sequences. Overall, the placement of 
PQ492270, PQ492271, and PQ319729 within or near the F. acuminatum 
group underscores their evolutionary relatedness to this species. The 
pairwise identity matrices for tef1-α, tub2, and ITS gene sequences were 
generated to evaluate sequence similarity among isolates. The percent
age identity ranged from 70 to 100 % for tef1-α, 82–100 % for tub2, and 
92–100 % for ITS sequences (Fig. 5). The matrices, visualized using the 
Sequence Demarcation Tool (SDT) v1.2 (http://web.cbio.uct.ac.za/), 
depicted the degree of similarity between sequences, with each colored 
cell representing a pairwise comparison.

4. Discussion

ptomatic tissues, fulfilling Koch’s postulates and confirming that F. 
acuminatum is pathogenic to saffron. The fungal isolate obtained from 
saffron corms in this study was initially presumed to be F. oxysporum, 
given its global prevalence and documented association with saffron 
corm rot in India and other parts of the world [5,40]. Previous studies 
have identified F. oxysporum as the causal organism of saffron corm rot, 
and these studies are based solely on morphological characteristics and 
ITS sequencing [11]. This initial assumption was further supported by 

the pinkish pigmentation observed during the preliminary stages of 
growth. However, the pigmentation of the isolate remained consistently 
pink to salmon, whereas authentic literature describes F. oxysporum as 
producing pink to purple pigmentation on culture media. The macro
conidia of the fungus were observed to be slightly curved with pointed 
ends, a characteristic feature of F. acuminatum, while F. oxysporum 
typically produces straight or slightly curved macroconidia with blunt 
ends [18,19,28]. Additionally, the retention of pink to salmon pigmen
tation further aligned with the characteristics of F. acuminatum. More
over, a detailed examination employing multigene sequence analysis, as 
discussed below, distinguished them as F. acuminatum. Earlier, F. acu
minatum has been identified as the causal agent of saffron corm rot in 
Khorramabad, Iran [59].

The validity of the morphological identification was confirmed 
through phylogenetic analysis using molecular data. Amplification of 
the Internal Transcribed Spacer (ITS) region with genus- and species- 
specific primers, along with the Transcription Elongation Factor (tef1-α) 
gene and β-tubulin (tub2) primers, was carried out for the accurate 
identification of the pathogen. The PCR products were sequenced, and 
the pathogen was accurately identified based on sequencing of the ITS1- 
ITS4, tef1-α, and tub2 regions. These genetic markers are widely recog
nized for their utility in the taxonomic and phylogenetic identification of 
fungi [6,41]. Sequence alignment using CLUSTALW revealed that 
sequence similarity was consistent, irrespective of the geographic origin 
of the isolates, confirming the reliability of these regions in dis
tinguishing fungal species [24,60].

In the phylogenetic study, F. acuminatum sequences of ITS, tef1-α and 
tub2 genes were compared with their respective hits retrieved from NCBI 
database and were compared with the already available F. acuminatum 
sequences. The phylogenetic analysis of the fungal query sequences 
PQ492270, PQ492271, and PQ319729 revealed close evolutionary re
lationships with F. acuminatum. All three sequences clustered within the 
F. acuminatum clade, with PQ492270 and PQ492271 showing moderate 
genetic divergence from other strains of F. acuminatum (Fig. 4). 
PQ319729 formed a subgroup within this clade, indicating minimal 
genetic variability. Other Fusarium species, such as F. nirenbergiae, 
F. oxysporum, F. commune, and F. annulatum, formed distinct clusters, 

Fig. 4. Phylogenetic relationships of Fusarium acuminatum causing corm rot in Crocus sativus L. Kashmirianus from India, based on a) tef1, b) tub2, and c) ITS1/4 
sequences. The isolate obtained in this study is marked by red triangle. The Neighbor-Joining method was used to construct the phylogenetic trees with branch 
lengths of 66.258 (tef1), 37.000 (Tub2), and 21.045 (ITS1/ITS4). Analyses included 857 (17 taxa), 1311 (19 taxa), and 603 (17 taxa) nucleotide sites, respectively. 
Bootstrap consensus trees were derived from 1000 replicates, with branches supported by bootstrap values ≥50% retained. Evolutionary distances were calculated 
using the p-distance method, expressed as base differences per site. Codon positions included 1st, 2nd, 3rd, and noncoding regions. Ambiguous sites and positions 
with <95% site coverage were excluded (partial deletion option). Analyses were performed in MEGA 11.
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highlighting the genetic separation from the query sequences. Similar 
species were grouped in a single clade irrespective of their geographic 
origin. The pairwise identity analyses of tef1-α, tub2, and ITS gene se
quences provided valuable insights into the genetic diversity among the 
isolates. The percentage identity ranged from 70 to 100 % for tef1-α, 
82–100 % for tub2, and 92–100 % for ITS sequences, highlighting 
varying levels of conservation across these loci (Fig. 5). A new fungal 
species F. acuminatum was found associated with causing saffron corm 
rot in Kashmir valley, and this is the first report of this pathogen from 
India.

5. Conclusion

The current study provides comprehensive insights into the etiology 
of corm rot disease in saffron (C. sativus L. Kashmirianus) cultivated in 
the Kashmir valley, identifying Fusarium acuminatum as the causal agent 
for the first time in India. Through a polyphasic approach involving 
morpho-cultural characterization, pathogenicity testing, and multigene 

sequence analysis, F. acuminatum was confirmed as the pathogen 
responsible for this destructive disease. Pathogenicity assays validated 
its virulence on saffron plants, fulfilling Koch’s postulates and estab
lishing its role in disease progression. The study also highlights the ge
netic distinctiveness of F. acuminatum compared to other Fusarium 
species. This research provides a foundation for effective disease man
agement strategies to mitigate the impact of F. acuminatum induced 
saffron corm rot in India.
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Table 4 
List of fungal species used for phylogenetic analysis.

Taxon GenBank Acc. No. DNA locus Specimen code Isolation source Country References

Fusarium commune MZ338563.1 tef1-α JFC1 Crocus sativus China [15]
Fusarium annulatum MZ338578.1 tef1-α JFA12 Crocus sativus China [15]
Fusarium nirenbergiae MT814622.1 tef1-α AN1 Crocus sativus China [16]
Fusarium oxysporum MH485044.1 tef1-α CBS 144134 Solanum tuberosum Germany [32]

MH484963.1 tef1-α CBS 221.49 Camellia sinensis Netherlands [32]
MH485034.1 tef1-α CPC 25822 Protea sp. South Africa [32]

Fusarium acuminatum KX702711.1 tef1-α G15SMX1-12-1 Wheat China [33]
JX397865.1 tef1-α CGC:S3BS-10-05 Wheat and barley Canada [29]
KR108750.1 tef1-α SDFAWY137F2 Saposhnikovia divaricata China Direct Submission
PQ492270.1 tef1-α ​ Crocus sativus India Present study
JF496578.1 tef1-α C1RA.007 Barley Spain [34]
JF496579.1 tef1-α C1RA.045 Barley Spain [34]
JF496581.1 tef1-α C3RA.032 Barley Spain [34]
KX752419.1 tef1-α JBL539 – Serbia Unpublished
KP868658.1 tef1-α AAFAWY137A22 Artemisia argyi China Direct Submission
KJ194170.1 tef1-α MP31 Alfa-alfa China Unpublished

Gibberella acuminata EF531698.1 tef1-α F30 Astragalus racemosus USA Unpublished
Fusarium nirenbergiae MT864720.1 β-Tubulin JD1 Crocus sativus China [16]

MT864723.1 β-Tubulin JD2 Crocus sativus China [16]
MT864726.1 β-Tubulin JD3 Crocus sativus China [16]
MT864727.1 β-Tubulin SH1 Crocus sativus China [16]
MT864717.1 β-Tubulin WY5 Crocus sativus China [16]
MT864722.1 β-Tubulin GY6 Crocus sativus China [16]

Fusarium callistephi MH485057.1 β-Tubulin CBS 187.53 Callistephus chinensis Netherlands Direct Submission
Fusarium carminascens MH485116.1 β-Tubulin CPC 25792 Zea mays South Africa [32]
Fusarium contaminatum MH485082.1 β-Tubulin CBS 111552 Pasteurized fruit juice Netherlands [32]
Fusarium acuminatum KJ572784.1 β-Tubulin FA-02622 Ginseng China [35]

KP325410. β-Tubulin M7 Actinidia arguta China [36]
KJ396328.1 β-Tubulin L19 ​ China Unpublished
PQ492271.1 β-Tubulin – Crocus sativus India This study
ON960209.1 β-Tubulin UNIJAG.PL.OP987 Arabidopsis arenosa Poland [31]
OQ433926.1 β-Tubulin SDS15 Divaricate Saposhniovia Root China Direct Submission
OQ433928.1 β-Tubulin SDS3 Divaricate Saposhniovia Root China Direct Submission

Fusarium oxysporum MH485054.1 β-Tubulin CBS 221.49 Camellia sinensis Netherlands [32]
MH485135.1 β-Tubulin CBS 144134 Solanum tuberosum Germany [32]

Fusarium sp KT268720.1 ITS P1426 Microthlaspi perfoliatum Spain [37]
Fusarium tricinctum PQ328656.1 ITS DG4 Angelica sinensis China Unpublished

OQ274939.1 ITS A3MO5 – Iran Unpublished
Fusarium commune MZ313313.1 ITS JFC1 Crocus sativus China [15]

MZ318051.1 ITS SFC20 Crocus sativus China [15]
MZ313312.1 ITS YFC5 Crocus sativus China [15]

Fusarium annulatum MZ313130.1 ITS JFA12 Crocus sativus China [15]
MZ313132.1 ITS WFA10 Crocus sativus China [15]

Fusarium acuminatum KP325408.1 ITS M7 Actinidia arguta China [36]
MK764994.1 ITS Acheng9-2 Alfalfa China Unpublished
KJ001758 ITS 02622 Ginseng China [35]
JX077013.1 ITS NJR101-31 Wetland sediment China [38]
JX114788.1 ITS F12SS1 Crown of Aleppo pine seedling Algeria [39]
JX114785.1 ITS F14SS3 Crown of Aleppo pine seedling Algeria [39]
JX114782.1 ITS F30SS3 Crown of Aleppo pine seedling Algeria [39]
JX114790.1 ITS F25RS3 Crown of Aleppo pine seedling Algeria [39]
PQ319729.1 ITS SKUAST_SC Crocus sativus India Present study
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[6] A.M. Husaini, S.A. ul Haq, A.J.L. Jiménez, Understanding Saffron Biology using 
Omics-and Bioinformatics Tools-A Step Towards Genome Modified Crocus sp 
(2021).

[7] A.M. Husaini, Challenges of climate change: omics-based biology of saffron plants 
and organic agricultural biotechnology for sustainable saffron production, GM 
Crops Food 5 (2) (2014) 97–105.

[8] V. Gupta, K. Kumar, K. Fatima, V.K. Razdan, B.C. Sharma, V. Mahajan, P.K. Rai, 
A. Sharma, V. Gupta, M.G.J.A. Hassan, Role of biocontrol agents in management of 
corm rot of saffron caused by Fusarium oxysporum 10 (9) (2020) 1398.

[9] M. Kafi, A.N. Kamili, A.M. Husaini, M. Ozturk, V. Altay, An expensive spice saffron 
(Crocus sativus L.): a case study from Kashmir, Iran, and Turkey. Global 
Perspectives on Underutilized Crops, Springer, 2018, pp. 109–149.

[10] A. Husaini, M. Bhat, A. Kamili, M. Mir, Kashmir saffron in crisis, Curr. Sci. 104 (6) 
(2013) 686–687.

[11] R. Gupta, J. Vakhlu, Native Bacillus Amyloliquefaciens W2 as a Potential 
Biocontrol for Fusarium Oxysporum R1 Causing Corm Rot of Crocus Sativus, vol. 
143, 2015, pp. 123–131.

[12] C. Kalha, V. Gupta, D. Gupta, S.J.P.D. Priya, First report of sclerotial rot of saffron 
caused by Sclerotium rolfsii in India 91 (9) (2007), 1203-1203.

[13] V. Gupta, G. Jamwal, C. Verma, A. Sharma, S.K. Gupta, S.K. Sharma, F. 
A. Mohiddin, Z.J.A.P.P. Amin, Development of ISSR-Derived SCAR Marker for 
Detection of Fusarium Oxysporum Responsible for Corm Rot of Saffron, 2024, 
pp. 1–14.

[14] V. Gupta, A. Sharma, P.K. Rai, S.K. Gupta, B. Singh, S.K. Sharma, S.K. Singh, 
R. Hussain, V.K. Razdan, D.J.A. Kumar, Corm rot of saffron: epidemiology and 
management 11 (2) (2021) 339.

[15] S.A. Mirghasempour, D.J. Studholme, W. Chen, W. Zhu, B.J.J.o.F. Mao, Molecular 
and pathogenic characterization of Fusarium species associated with corm rot 
disease in saffron from China 8 (5) (2022) 515.

[16] S.A. Mirghasempour, D.J. Studholme, W. Chen, D. Cui, B.J.P.D. Mao, Identification 
and characterization of Fusarium nirenbergiae associated with saffron corm rot 
disease 106 (2) (2022) 486–495.

[17] A.M. Husaini, S.A.U. Haq, A.J.L. Jiménez, Understanding saffron biology using 
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Abstract
Horticultural crops, including fruits, vegetables, flowers, and herbs, are essential for food security and economic sustain-
ability. Advances in biotechnology, including genetic modification and omics approaches, have significantly improved these 
crops'traits. While initial transgenic efforts focused on protein-coding genes, recent research highlights the crucial roles of 
non-coding RNAs (ncRNAs) in plant growth, development, and gene regulation. ncRNAs, including microRNAs (miRNAs) 
and long non-coding RNAs (lncRNAs), influence key biological processes through transcriptional and post-transcriptional 
regulation. This review explores the classification, functions, and regulatory mechanisms of ncRNAs, emphasizing their 
potential in enhancing horticultural crop quality. This growing understanding offers promising avenues for enhancing crop 
performance and developing new horticultural varieties with improved traits. Additionally, we elucidate the role of ncRNA 
databases and predictive bioinformatics tools into modern horticultural crop improvement strategies.

Keywords  Horticulture · Non-coding RNAs · MicroRNAs · Gene regulation · Bioinformatics · Crop improvement

Introduction

Horticultural plants, including fruits, ornamental trees, veg-
etables, flowers, herbs, and tea plants, have been developed 
to address human needs for food and aesthetic value through 
techniques such as hybridization, mutation breeding, and 
genetic modification (Bashir et al. 2023; Xiong et al. 2015). 
Early transgenic breeding efforts primarily focused on 
protein-coding genes associated with specific agricultural 
traits(Husaini and Xu 2016a, b, Husaini et al. 2010a, b, 
Husaini 2010, Nerkar et al. 2022). Different approaches 
were developed for addressing the concerns raised against 
transgenic technologies (Brookes and Barfoot 2018; Husaini 
et al. 2011; Husaini and Tuteja 2013).However, overexpres-
sion of different protein coding genes remained as a method 
of choice for improving horticultural crops(Husaini and Xu 
2016a, b; Husaini 2010; Husaini and Abdin 2008). Later, the 

challenges of climate change emerged as a major threat caus-
ing multiple biotic and abiotic stresses, and crops tolerant 
against these were developed using modern biotechnologi-
cal and omics- approaches (Campbell et al. 2018; Gil et al. 
2019; Husaini and Xu 2016a, b; Husaini et al. 2012; Husaini 
and Khurshid 2021). Genetic modification or modulation of 
pleiotropic genes is increasingly being explored as a strategy 
to develop climate-resilient, nutrient-dense crops suitable for 
high-value farms (Husaini 2022; Husaini and Rafiqi 2012).
Apart from the coding regions of the plant genome, the other 
prominent targets for the development of better horticultural 
crops are non-coding RNAs(ncRNAs).

Non-coding RNAs are acknowledged for their essen-
tial roles in plant growth, development, and environmental 
stress responses, operating through both transcriptional 
and post-transcriptional mechanisms(Haq et  al. 2022; 
Yang et al. 2023). Though up to 90% of the eukaryotic 
genome is transcribed into RNA, only about 2% of these 
RNA molecules encode proteins. Most of these tran-
scripts are non-coding RNAs (ncRNAs) derived from 
regions once thought to be inactive or irrelevant, includ-
ing intergenic areas, repetitive sequences, transposons, 
and pseudogenes(Zhang et al. 2019).Initially, transcripts 
originating from these regions were thought to be mere 
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transcriptional noise because they either lacked signifi-
cant protein-coding potential or had poorly conserved 
sequences.

While experimental research has provided much insight 
into the roles of non-coding RNAs (ncRNAs) in different 
biological processes, next-generation sequencing (NGS) 
and computational biology plays a crucial role in advanc-
ing this knowledge by predicting possible new interac-
tions between ncRNAs and other molecules (Rincón-
Riveros et al. 2021). Computational predictions provide 
a crucial alternative for discovering new insights, creat-
ing a feedback loop where experimental findings enhance 
computational models. These models, in turn, suggest 
potential interactions that can be tested and validated 
experimentally.

Non-coding RNAs (ncRNAs) regulate gene expression 
and key physiological processes in plants. Advances in 
sequencing and bioinformatics have expanded ncRNA 
databases and predictive tools, yet their applications in 
horticultural crop improvement remain underexplored. 
This review classifies ncRNAs, outlines their regulatory 
roles, and summarizes key databases and tools for func-
tional analysis. It further highlights the potential of micro-
RNAs (miRNAs) and long non-coding RNAs (lncRNAs) 
in enhancing horticultural crop traits. By integrating bioin-
formatics with functional insights, this study underscores 
ncRNAs’ role in advancing horticultural research.

Classification of non‑coding RNAs

Since their discovery, non-coding RNAs (ncRNAs) have 
been divided into different categories. The major catego-
ries of ncRNA transcripts are housekeeping ncRNAs and 
regulatory ncRNAs(Fig. 1)(Yang et al. 2016). Housekeep-
ing ncRNAs play a crucial role in fundamental cellular 
and ribosomal processes. This category includes riboso-
mal RNAs (rRNAs), transfer RNAs (tRNAs, ranging from 
50–200 nucleotides), small nuclear RNAs or spliceosomal 
RNAs (snRNAs, typically 50–200 nucleotides), and small 
nucleolar RNAs (snoRNAs, around 50–200 nucleotides). On 
the other hand, regulatory ncRNAs modulate gene expres-
sion by interacting with mRNAs or other molecules. They 
play key roles in controlling developmental processes, cel-
lular responses, and gene silencing. They encompass small 
RNAs such as microRNAs (miRNAs, approximately 20–24 
nucleotides), which are the most abundant class of small 
non-coding RNAs, small interfering RNAs (siRNAs, 20–24 
nucleotides), piwi-interacting RNAs (piRNAs, 24–32 nucle-
otides), and long non-coding RNAs (lncRNAs, longer than 
200 nucleotides) (Zhao et al. 2022). Regulatory ncRNAs 
or ribo-regulators serve as crucial regulatory RNA mol-
ecules transcribed from DNA but not translated into pro-
teins. Additionally, circular RNAs (circRNAs), a distinct 
class of endogenous ncRNAs characterized by covalently 
closed structures without 5'or 3'ends, are produced through 

Fig. 1   The major categories of ncRNAs and their sub-categories: 
Housekeeping ncRNAs play a crucial role in fundamental cellular 
and ribosomal processes, and include ribosomal RNAs (rRNAs), 
transfer RNAs (tRNAs, ranging from 50–200 nucleotides), small 
nuclear RNAs or spliceosomal RNAs (snRNAs, typically 50–200 
nucleotides), and small nucleolar RNAs (snoRNAs, around 50–200 

nucleotides). The regulatory ncRNAs modulate gene expression by 
interacting with mRNAs or other molecules, and encompass micro-
RNAs (miRNAs, approximately 20–24 nucleotides), small interfering 
RNAs (siRNAs, 20–24 nucleotides), piwi-interacting RNAs (piR-
NAs, 24–32 nucleotides), and long non-coding RNAs (lncRNAs, 
longer than 200 nucleotides)
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non-sequential back-end splicing from precursor mRNAs by 
RNA polymerase II (Bhogireddy et al. 2021). They are cat-
egorized into exonic, intronic, intergenic, and exon-intronic 
circRNAs based on their genomic origin, and play a role in 
gene expression regulation by acting as miRNA sponges.

Exploring non‑coding RNAs and their 
regulatory functions in plants

miRNAs and siRNAs regulate gene expression through vari-
ous mechanisms. These include mRNA cleavage, inhibition 
of translation, and suppression of transcription (Wang et al. 
2021). Likewise, lncRNAs regulate gene expression through 
interactions with proteins and miRNAs. They impact mRNA 
stability and translation and can also modify chromatin 
structure (Waititu et al. 2020).

Target transcript cleavage by miRNAs and siRNAs

Sequence-specific gene silencing is achieved when miRNAs 
or siRNAs bind to complementary regions of target mRNA 
molecules, leading to their cleavage (Lam et  al. 2015). 
Regarding miRNAs, the processing of MIR genes involves 
DCL1, HYL1, and the SE complex (Li and Yu 2021). This 
processing produces mature miRNA-miRNA duplexes. 
These duplexes are then transported to the cytoplasm by 
the HASTY protein, where they associate with the RNA-
Induced Silencing Complex (RISC), which includes AGO1. 
The RISC-AGO1 complex binds to complementary sites 
within the target RNA transcript's sense sequence, leading to 
its degradation. Importantly, the antisense strand of miRNAs 
remains associated within the RISC complex (Lelandais-
Brière et al. 2010). For siRNAs, one strand is incorporated 
into the RISC-AGO1 or AGO7 complex, guiding the cleav-
age of target gene transcripts approximately 10–11 nucle-
otides upstream of the 5'end of the antisense strand (Liu 
et al. 2017). Subsequently, the enzyme EXONUCLEASE 
4 (XRN4) participates in the degradation of both the 3'and 
5'cleaved fragments (Ren et al. 2014). Recent research has 
identified the RNA binding and target cleavage functions 
of AGO2, AGO4, and AGO10 in plants. These discoveries 
highlight the intricate nature of small RNA-mediated gene 
silencing processes (Zhu et al. 2011).

Translational suppression by miRNAs and siRNAs

AGO1 and AGO10 facilitate translational inhibition through 
imperfect pairing of small RNAs (sRNAs) with target 
mRNA in plants (Lee et al. 2018). However, the effectiveness 
of this inhibition process depends considerably on the quan-
tity of miRNA binding sites (Cuellar and McManus 2005). 
By binding to the target gene's open reading frame (ORF) 

or 5'untranslated region (UTR), the RISC-AGO1 complex 
regulates translation. This binding restricts the recruitment 
or mobility of ribosomes. More factors like VARICOSE, 
GW-repeat proteins, the microtubule enzyme KATANIN, 
and ALTERED MERISTEM PROGRAM 1 influence this 
translation inhibition mechanism (Li et al. 2013a, b, c). The 
mechanisms behind sRNA-mediated translation repression 
and how the repressed target mRNAs escape endonucleo-
lytic cleavage need further investigation.

DNA methylation directed by miRNAs and siRNAs

The Arabidopsis DCL family consists of multiple copies that 
are essential for generating small RNAs (sRNAs) of various 
lengths. DCL1 specifically converts partially paired double-
stranded RNA (dsRNA) precursors into mature 21-nucleo-
tide (nt) miRNAs (Pikaard and Scheid 2014). On the con-
trary, 20 to 22 nucleotide siRNAs are produced from entirely 
complementary dsRNA precursors via DCL2 and DCL4. 
24 nucleotide siRNAs, often referred to as hc-siRNAs, are 
produced by DCL3 and frequently contribute to gene silenc-
ing through the RdDM pathway (Creasey et al. 2014). These 
hc-siRNAs are produced during the transcription process 
from heterochromatic domains, where they lead to cytosine 
methylation in the CG, CHG, and CHH sequence contexts 
in cis. DCL3-dependent miRNAs bind to AGO4 and form 
a complex that methylates histones and cytosines to restrict 
gene expression (Ye et al. 2012). In contrast, the de novo 
hc-siRNA-induced RdDM process needs the cooperation of 
Pol IV and V, DCL, AGO, and RNA-Dependent RNA Poly-
merase (RDR). These elements promote methylation at par-
ticular target sites and transcribe double-stranded precursors. 
Systemic silencing is thus caused by methylation of DNA 
and lysine at histone H3's ninth site (H3 K9). Transcriptional 
gene silencing is achieved through the hc-siRNA/AGO4 
RNA-Induced Silencing Complex (RISC), which targets 
DNA and H3 K9 methyltransferases to the target sequence.

Gene expression modulation by long non‑coding 
RNAs

Long non-coding RNAs (lncRNAs) function as intermediar-
ies between RNA molecules and proteins. They play a cru-
cial role in regulating gene expression. Depending on their 
interactions, lncRNAs can act as transcriptional activators, 
enhancing gene expression, or as repressors, inhibiting it 
(Dey et al. 2022). Nevertheless, the exact molecular mecha-
nisms through which they exert these functions in plants 
remain partially understood. Plant lncRNAs function in both 
cis and trans contexts (Wu et al. 2020). Cis-acting lncR-
NAs function near their sites of synthesis. They act directly 
on local nucleotide sequences or chromosomal regions 
associated with one or more adjacent genes. Conversely, 
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trans-acting lncRNAs migrate from their point of synthesis 
and can impact multiple genes, even across considerable dis-
tances, including those located on different chromosomes. 
Furthermore, lncRNAs can also serve as precursors for 
small RNAs (sRNAs) (Lambert et al. 2019). Certain lncR-
NAs can form double-stranded RNA duplexes with Natural 
Antisense Transcripts (NAT), generating sRNAs that per-
form regulatory functions. A Natural Antisense Transcript 
(NAT) pair was formed between the complementary regions 
of the Rab2-like gene and a pentatricopeptide repeat gene. 
This process was facilitated by an endogenous siRNA in 
Arabidopsis (Liu et al. 2015). Additionally, lncRNAs can 
serve as miRNA decoys, binding to miRNAs and preventing 
them from interacting with their target mRNAs. This inter-
ference reduces miRNA activity and relieves the repression 
of the target gene. For instance, in Arabidopsis experiencing 
phosphate deficiency, the lncRNA"Induced by Phosphate 
Starvation 1 (IPS1)"was discovered to mimic miRNA399 
(Yuan et al. 2016). Moreover, lncRNAs often act through 
various mechanisms such as protein–protein interactions or 
post-translational modifications or subcellular localization, 
and via epigenetic regulatory mechanisms, including meth-
ylation of DNA, histone modification as well as chromatin 
remodelling (Matzke and Mosher 2014).

Computational tools for identifying 
and analyzing ncRNAs

Over the past twenty years, extensive research has been 
devoted to identifying non-coding RNAs (ncRNAs) and 
exploring their roles in various cellular processes (Gariki-
pati and Uchida 2021). The introduction of next-generation 
sequencing (NGS) has revolutionized our ability to analyze 
ncRNA transcriptomes under different conditions. This 
advancement has opened new avenues for discovering novel 
ncRNAs and detecting changes in their expression levels 
(Mubarak and Zahir 2022). Recent advancements in tran-
scriptomics methodologies and computational resources 
are significantly improving our ability to identify, classify, 
annotate, and analyze non-coding RNAs (ncRNAs). These 
developments are vital for the scientific community as they 
facilitate the discovery, annotation, archiving, prediction, 
and interpretation of ncRNA data (Dindhoria et al. 2022; 
Thind et al. 2022). However, details about these sequences 
are frequently hidden in supplementary materials associ-
ated with publications or are only indicated by the chro-
mosomal location of the genes that encode them. This can 
pose difficulties for biologists and bioinformaticians in effi-
ciently accessing and extracting the relevant data (Burley 
et al. 2022). To address this issue, specialized databases 
have been developed for various types of non-coding RNAs 
(ncRNAs) to extract, abstract, and present this information 

in a consolidated manner online. In 2010, a meeting of 
RNA researchers at Hinxton emphasized the swift growth 
in ncRNA sequence data and functional insights (Bateman 
et al. 2011). They advocated for the creation of a unified 
ncRNA sequence database that would harness the expertise 
of the RNA research community by integrating information 
from various existing ncRNA databases. With the continu-
ous release of genomic information from diverse plant spe-
cies, a strong foundation is being established for the dis-
covery of novel ncRNAs. Additionally, growing knowledge 
about the function, structure, and conservation of ncRNAs 
is enhancing our ability to distinguish different ncRNA 
types. Since their discovery, numerous bioinformatics tools, 
including databases and software, have been developed to 
study ncRNAs. A significant proportion of these resources 
have been introduced in recent years (Tables 1 and 2).

ncRNA databases

ncRNA databases serve as comprehensive repositories that 
consolidate diverse types of ncRNA-related data, including 
sequence information, regulatory interactions, and expres-
sion profiles. Many of these databases integrate experimen-
tally validated datasets to enhance reliability. For example, 
miRbase (Kozomara et al. 2019) systematically curates pub-
lished mature miRNA sequences alongside their precursor 
hairpin structures. Likewise, resources such as miRTarBase 
(Huang et al. 2020) and NPInter (Teng et al. 2020) document 
interactions between ncRNAs and their molecular targets, 
supplementing these records with supporting experimen-
tal evidence. Currently, miRNAs, long non-coding RNAs 
(lncRNAs), and circular RNAs (circRNAs) are catalogued 
across multiple specialized online platforms (Jin et al. 2021) 
(Table  1). The rapid advancements in high-throughput 
sequencing technologies, combined with the continuous 
expansion of genomic datasets, have significantly enriched 
these repositories, enabling large-scale comparative analy-
ses of ncRNA evolution. These developments facilitate 
the establishment of conserved models for predicting and 
functionally characterizing novel ncRNAs. Despite these 
advancements, several challenges persist in utilizing these 
databases for cross-species investigations. One of the pri-
mary constraints is the difficulty in distinguishing conserved 
ncRNAs from species-specific counterparts. Furthermore, 
achieving high-confidence functional annotation of novel 
ncRNAs remains a considerable challenge, necessitating the 
development of more sophisticated computational frame-
works for accurate prediction and validation.

ncRNA prediction tools

The computational prediction of ncRNAs encompasses 
both their identification and functional annotation. While 
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Table 1   Bioinformatics databases for ncRNA analysis

ncRNA Type Database Description Web Address Reference

lncRNA PLNlncRbase • Curated database of experimen-
tally identified plant long non-
coding RNAs (lncRNAs) mir828

• Provides sequences, classifica-
tions, expression profiles, and 
detection methods

• Includes predicted functions and 
target genes for studying regula-
tory roles

http://​bioin​forma​tics.​ahau.​edu.​cn/​
PLNln​cRbase

(Xuan et al. 2015)

JustRNA • Offers expression profiles and 
network interactions of plant 
lncRNAs

• Enables exploration of regulatory 
roles and functional associations 
in various plant species

http://​justr​na.​itps.​ncku.​edu.​tw/ (Tseng et al. 2023)

GreeNC • A wiki-based database of plant 
non-coding RNAs (ncRNAs)

• Provides curated information 
on lncRNAs and other ncRNAs 
across plant species

http://​greenc.​scien​cedes​igners.​com/ (Paytuví Gallart et al. 2016)

CANTATAdb 2.0 • Covers lncRNAs from 39 plant 
species and algae

• Provides annotations, expression 
data, and functional predictions

http://​canta​ta.​amu.​edu.​pl/
http://​yeti.​amu.​edu.​pl/​CANTA​TA/

(Szcześniak et al. 2019)

AlnC • Focuses on lncRNAs in angio-
sperms

• Offers annotations, expression 
patterns, and functional insights

http://​www.​nipgr.​ac.​in/​AlnC (Singh et al. 2021)

lncRNAdb • A database for regulation mRNA 
and lncRNAs that have or associ-
ate with biological functions in 
eukaryotes

http://​www.​lncrn​adb.​org/ (Amaral et al. 2011)

NONCODE • A database of expression and 
biological functions of lncRNAs

http://​www.​nonco​de.​org/ (Liu et al. 2005)

CPC • Calculate protein-coding potential 
of lncRNAs and other RNAs

http://​cpc2.​cbi.​pku.​edu.​cn/ (Kong et al. 2007)

circRNA AtCircDB • Specialized for circular RNAs 
(circRNAs) in Arabidopsis 
thaliana

• Provides annotations, expression 
profiles, and functional predic-
tions

http://​genome.​sdau.​edu.​cn/​circR​NA (Ye et al. 2019)

CropCircDB • Dedicated to circRNAs in crop 
plants

• Focuses on their expression pat-
terns and regulatory roles under 
abiotic stress

http://​genome.​sdau.​edu.​cn/​crop/
http://​deepb​iology.​cn/​crop/

(Wang et al. 2019)

PlantcircBase • Database for plant circular RNAs 
(circRNAs)

• Integrates high-throughput 
sequencing data for annotation

• Provides expression profiling and 
functional analysis

• Links circRNAs to miRNA and 
RNA-binding protein (RBP) 
interactions

• Supports evolutionary studies of 
plant circRNAs

http://​ibi.​zju.​edu.​cn/​plant​circb​ase/​
index.​php

(Chu et al. 2017)

http://bioinformatics.ahau.edu.cn/PLNlncRbase
http://bioinformatics.ahau.edu.cn/PLNlncRbase
http://justrna.itps.ncku.edu.tw/
http://greenc.sciencedesigners.com/
http://cantata.amu.edu.pl/
http://yeti.amu.edu.pl/CANTATA/
http://www.nipgr.ac.in/AlnC
http://www.lncrnadb.org/
http://www.noncode.org/
http://cpc2.cbi.pku.edu.cn/
http://genome.sdau.edu.cn/circRNA
http://genome.sdau.edu.cn/crop/
http://deepbiology.cn/crop/
http://ibi.zju.edu.cn/plantcircbase/index.php
http://ibi.zju.edu.cn/plantcircbase/index.php
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Table 1   (continued)

ncRNA Type Database Description Web Address Reference

miRNA miRbase • Comprehensive database of 
known microRNA (miRNA) 
sequences and annotations

• Includes miRNA identification, 
classification, genomic locations, 
and target interactions

http://​www.​mirba​se.​org/ (Kozomara and Griffiths-Jones 
2014)

PNRD • Comprehensive database for plant 
non-coding RNAs (ncRNAs)

• Contains 25,739 entries covering 
different ncRNAs

• Includes 11 types of non-coding 
RNAs

• Covers 150 plant species
• Provides a user-friendly interface 

for easy navigation

http://​struc​tural​biolo​gy.​cau.​edu.​cn/​
PNRD/​index.​php

(Yi et al. 2015)

miRIAD • Focuses on intragenic miRNAs 
and their host genes

• Provides insights into genomic 
organization, regulatory relation-
ships, and functional interactions

http://​www.​miriad-​datab​ase.​org/ (Hinske et al. 2014)

MetaMirClust • Database for miRNA clusters and 
their conservation across species

• Offers insights into co-transcrip-
tion, evolutionary relationships, 
and regulatory functions

http://​fgfr.​ibms.​sinic.​aedu.​tw/​
MetaM​irClu​st

(Chan and Lin 2016)

miRTarBase • Collection of experimentally vali-
dated miRNA-target interactions

• Provides curated evidence for 
functional studies on miRNA-
mediated gene regulation

http://​mirta​rbase.​mbc.​nctu.​edu.​tw/ (Hsu et al. 2010)

PmiREN • Comprehensive plant miRNA 
database

• Offers curated annotations, 
expression profiles, target predic-
tions, and evolutionary insights

http://​www.​pmiren.​com/ (Guo et al. 2020)

Rfam • A comprehensive database of 
non-coding RNA (ncRNA) 
families, including lncRNAs, 
miRNAs, riboswitches, and other 
structured RNA elements

• Provides multiple sequence 
alignments, consensus secondary 
structures, and covariance models 
for RNA families

• Facilitates the identification and 
annotation of ncRNAs across 
different species using computa-
tional tools

• Supports comparative genom-
ics and evolutionary studies of 
structured RNAs

• Widely used for RNA classifica-
tion and functional predictions in 
diverse organisms

http://​rfam.​xfam.​org/ (Kalvari et al. 2018)

http://www.mirbase.org/
http://structuralbiology.cau.edu.cn/PNRD/index.php
http://structuralbiology.cau.edu.cn/PNRD/index.php
http://www.miriad-database.org/
http://fgfr.ibms.sinic.aedu.tw/MetaMirClust
http://fgfr.ibms.sinic.aedu.tw/MetaMirClust
http://mirtarbase.mbc.nctu.edu.tw/
http://www.pmiren.com/
http://rfam.xfam.org/
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Table 1   (continued)

ncRNA Type Database Description Web Address Reference

mirPub • A curated database providing 
literature-based information on 
microRNAs (miRNAs)

• Collects and organizes experi-
mentally validated miRNA-related 
publications

• Offers insights into miRNA func-
tions, regulations, and disease 
associations

• Facilitates miRNA research by 
linking publications to relevant 
miRNA annotations and interac-
tions

• Supports researchers in identify-
ing key references for miRNA 
functional studies

http://​www.​micro​rna.​gr/​mirpub/ (Vergoulis et al. 2015)

PeTMbase • A specialized database for 
plant-encoded transfer-messenger 
RNAs (tmRNAs)

• Provides curated information on 
tmRNA sequences, structures, and 
functional roles in plants

• Supports research on the role of 
tmRNAs in ribosome rescue and 
stress responses

• Includes comparative analysis 
across different plant species

http://​petmb​ase.​org/ (Karakülah et al. 2016)

AtmiRNET • A database for Arabidopsis 
thaliana microRNA (miRNA) 
regulatory networks

• Provides curated miRNA-target 
interactions, co-expression data, 
and functional annotations

• Supports network-based analysis 
of miRNA-mediated gene regula-
tion in Arabidopsis

• Helps researchers explore miRNA 
roles in plant growth, develop-
ment, and stress responses

http://​AtmiR​NET.​itps.​ncku.​edu.​tw/ (Chien et al. 2015)

PmiRExAt • A plant microRNA expression 
atlas providing expression profiles 
of miRNAs across various tissues, 
developmental stages, and stress 
conditions

• Supports comparative analysis 
of miRNA expression patterns in 
different plant species

• Facilitates functional studies by 
linking miRNA expression data 
with biological processes and 
environmental responses

• A valuable resource for under-
standing the regulatory roles of 
miRNAs in plant development 
and stress adaptation

http://​pmire​xat.​nabi.​res.​in/ (Gurjar et al. 2016)

http://www.microrna.gr/mirpub/
http://petmbase.org/
http://AtmiRNET.itps.ncku.edu.tw/
http://pmirexat.nabi.res.in/
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Table 1   (continued)

ncRNA Type Database Description Web Address Reference

PMTED • A comprehensive database 
integrating plant microRNAs 
(miRNAs) and their target gene 
expression profiles

• Provides experimentally validated 
miRNA-target interactions in 
plants

• Supports comparative analysis of 
miRNA-target expression across 
different conditions and tissues

• Helps researchers study miRNA-
mediated gene regulation in vari-
ous plant species

http://​pmted.​agrin​ome.​org/ (Sun et al. 2013a, b)

PASmiR • A database focusing on plant 
miRNAs and associated small 
RNAs, providing comprehensive 
annotation and interaction data

• Includes experimentally validated 
and predicted miRNA-target 
interactions across various plant 
species

• Offers functional analysis tools 
for studying miRNA regulatory 
networks in plants

• Supports comparative expression 
profiling of miRNAs and small 
RNAs under different conditions

http://​pcsb.​ahau.​edu.​cn:​8080/​
PASmiR/

(Zhang et al. 2013)

tasiRNAdb • A database dedicated to trans-
acting small interfering RNAs 
(tasiRNAs) in plants

• Provides information on tasiRNA 
sequences, biogenesis pathways, 
and regulatory functions

• Includes target predictions and 
expression profiles across differ-
ent plant species

• Supports research on tasiRNA-
mediated gene silencing and its 
role in plant development and 
stress responses

http://​bioin​fo.​jit.​edu.​cn/​tasiR​NADat​
abase/

(Zhang et al. 2014)

starBase • A comprehensive database inte-
grating CLIP-seq, degradome-seq, 
and RNA-seq data

• Provides information on miRNA-
target interactions, ceRNA 
(competing endogenous RNA) 
networks, and RNA-binding 
protein (RBP) interactions

• Supports multiple species, includ-
ing plants and animals

• Enables visualization and 
functional analysis of miRNA-
mediated gene regulation

http://​starb​ase.​sysu.​edu.​cn/ (Yang et al. 2011)

http://pmted.agrinome.org/
http://pcsb.ahau.edu.cn:8080/PASmiR/
http://pcsb.ahau.edu.cn:8080/PASmiR/
http://bioinfo.jit.edu.cn/tasiRNADatabase/
http://bioinfo.jit.edu.cn/tasiRNADatabase/
http://starbase.sysu.edu.cn/
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Table 1   (continued)

ncRNA Type Database Description Web Address Reference

RNAcentral • Comprehensive Database for non-
coding RNAs

• Integrates data from multiple 
expert databases (e.g., miRBase, 
Rfam, Ensembl, RefSeq)

• Contains millions of RNA 
sequences from various species

• Covers different types of ncR-
NAs, including miRNAs, rRNAs, 
lncRNAs, tRNAs, and snoRNAs

• Provides functional annotations 
and sequence alignments

https://​rnace​ntral.​org/ (Bateman et al. 2011)

miRNEST • A comprehensive database of 
plant and animal microRNAs 
(miRNAs)

• Includes both known and pre-
dicted miRNAs along with their 
genomic locations and secondary 
structures

• Provides expression data, target 
predictions, and comparative 
evolutionary analysis

• Supports miRNA identification 
across multiple species

http://​mirne​st.​amu.​edu.​pl/ (Szcześniak et al. 2012)

siRNAdb • A specialized database for small 
interfering RNAs (siRNAs) in 
plants

• Provides curated annotations 
of siRNAs, including their 
sequences, origins, and regulatory 
roles

• Supports functional analysis of 
siRNA-mediated gene silencing 
mechanisms

• Helps researchers explore the 
involvement of siRNAs in plant 
defense, stress responses, and 
epigenetic regulation

http://​siRNA.​cgb.​ki.​se (Chalk et al. 2005)

https://rnacentral.org/
http://mirnest.amu.edu.pl/
http://siRNA.cgb.ki.se
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numerous algorithms have been developed for ncRNA 
discovery, relatively few specialize in functional predic-
tion. These tools can be categorized based on their specific 
applications (Table 2). A major challenge in the field lies 
in accurately identifying novel ncRNAs and their molecu-
lar targets. Recent advancements in predictive methodolo-
gies primarily focus on three key areas: miRNA sequence 
and precursor identification (Fei et al. 2021), detection 

of ncRNA binding sites on target molecules (Brousse 
et al. 2014), and modeling or visualizing secondary and 
tertiary RNA structures (Biesiada et al. 2016). Sequence 
alignment remains the cornerstone of ncRNA prediction; 
however, sequence divergence presents a significant hur-
dle in achieving high accuracy. Evolutionarily conserved 
ncRNAs, particularly those governing fundamental devel-
opmental pathways, exhibit strong conservation across 

Table 1   (continued)

ncRNA Type Database Description Web Address Reference

PmiRKB • A specialized plant miRNA data-
base with four major functional 
modules:

• SNP module provides insights 
into single nucleotide polymor-
phisms (SNPs) within miRNA-
related regions, helping research-
ers study genetic variations 
affecting miRNA function

• Pri-miR module focuses on 
primary miRNA (pri-miR) 
structures, offering valuable 
information for understanding 
miRNA biogenesis and regulation 
in plants

• MiR–Tar module contains data on 
miRNA-target interactions, aiding 
in the functional annotation of 
plant miRNAs and their regula-
tory roles

• Self-reg module analyzes self-
regulatory feedback loops involv-
ing plant miRNAs, contributing 
to the understanding of complex 
gene regulatory networks

http://​bis.​zju.​edu.​cn/​pmirkb/ (Meng et al. 2010)

scaRNAbase • Dedicated to scaRNAs, a class of 
small non-coding RNAs

• Provides sequence data and anno-
tations for scaRNAs

• Includes functional information 
related to snRNA modifications

• Supports research on RNA 
processing and ribonucleoprotein 
biogenesis

http://​gene.​fudan.​edu.​cn/​snoRN​
Abase.​nsf

(Xie et al. 2007)

NPInter • Provides interaction informa-
tion between non-coding RNAs 
(ncRNAs) and other biomolecules 
(proteins, DNAs, and RNAs)

• Integrates experimentally vali-
dated ncRNA interactions from 
published literature

• Covers various ncRNA types, 
including miRNAs, lncRNAs, 
circRNAs, and snoRNAs

• Supports cross-species interac-
tion analysis to explore conserved 
regulatory mechanisms

• Helps researchers study the func-
tional roles of ncRNAs in gene 
regulation and disease pathways

http://​bigda​ta.​ibp.​ac.​cn/​npint​er4/ (Teng et al. 2020)

http://bis.zju.edu.cn/pmirkb/
http://gene.fudan.edu.cn/snoRNAbase.nsf
http://gene.fudan.edu.cn/snoRNAbase.nsf
http://bigdata.ibp.ac.cn/npinter4/
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http://ccbb.jnu.ac.in/plncpro/
https://github.com/artempronozin95/ICAnnoLncRNA-identification-classification-and-annotation-of-LncRNA
https://github.com/artempronozin95/ICAnnoLncRNA-identification-classification-and-annotation-of-LncRNA
https://github.com/artempronozin95/ICAnnoLncRNA-identification-classification-and-annotation-of-LncRNA
https://github.com/deshpan4/PLIT
https://lncrnapipe.cimap.res.in/
http://bioinformaticstools.mayo.edu/research/UClncR
http://bioinformaticstools.mayo.edu/research/UClncR
https://github.com/hbusra/lncMachine
https://iasri-sg.icar.gov.in/aslncr/
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https://github.com/spu112005/prelnc2
https://github.com/lulab/COME
https://github.com/www-bioinfo-org/CNCI
https://github.com/www-bioinfo-org/CNCI
http://rna-cpat.sourceforge.net/
https://github.com/Peg-Wu/CircPCBL
http://circprime.elgene.net/
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species (Jarroux et al. 2017). In contrast, recently evolved 
ncRNAs often demonstrate species specificity. Moreover, 
different ncRNA classes display varying degrees of con-
servation, further complicating cross-species predictions. 
Enhancing the precision of ncRNA prediction remains an 
ongoing challenge, which could potentially be addressed 
through the development of conserved computational 
models tailored to specific ncRNA families, leveraging 
the rapidly expanding repository of ncRNA sequence and 
functional data.

Regulatory roles of ncRNAs in enhancing 
quality traits of horticultural crops

Horticulture, one of the oldest and most globally sig-
nificant agricultural practices, encompasses a diverse 
range of crops, including fruits, vegetables, ornamental 
plants, herbs, and tea trees. Over time, various breeding 
strategies-such as hybridization, mutation breeding, and 
transgenic approaches have been employed to enhance 
desirable traits in these crops. Traditionally, transgenic 
breeding primarily targeted protein-coding genes associ-
ated with key agronomic traits. However, recent discover-
ies have revealed that non-coding RNAs (ncRNAs) play 
pivotal roles in regulating plant growth, development, and 
responses to environmental stimuli at both transcriptional 
and post-transcriptional levels. As a result, ncRNAs are 
emerging as promising molecular targets for accelerating 
the domestication and genetic improvement of horticul-
tural crops.

Although ncRNA discovery and functional charac-
terization have been ongoing for over half a century, their 
widespread presence and diverse regulatory roles were not 
fully appreciated until the post-genomic era. A surpris-
ing revelation from genome annotations is that protein-
coding sequences occupy only a small fraction (2–25%) of 
the genomic landscape. Functional insights into ncRNAs 
have been gained through molecular genetic approaches, 
including gain-of-function and loss-of-function analyses. 
By examining recent advancements in ncRNA research in 
horticultural crops, this review aims to provide a founda-
tion for further investigations and practical applications 
in the field. It explores critical biological processes such 
as pigment biosynthesis, organ size determination, flavor 
and texture modulation, secondary metabolite production, 
reproductive tissue differentiation, and the intricacies of 
fruit ripening across a range of horticultural crops. These 
processes, intricately regulated by ncRNAs, are central to 
enhancing the qualitative attributes and overall performance 
of horticultural crops, offering valuable insights into their 
molecular control.

Fruits

The biosynthesis and accumulation of pigments are funda-
mental processes that drive the maturation and ripening of 
horticultural crops, contributing significantly to their char-
acteristic color transitions. These pigments not only define 
the visual appeal of fruits and vegetables but also serve as 
bioactive compounds, enhancing the nutritional and health-
promoting properties of horticultural produce. Pigment 
accumulation is largely governed by the progression of rip-
ening stages, making it an essential biochemical marker for 
development of horticultural crops, with direct implications 
for post-harvest storage and quality management (Kapoor 
et al. 2022). Anthocyanins, a prominent class of pigments, 
play a key role in determining the coloration of crops and are 
primarily regulated by MYB transcription factors. In tomato 
(Solanum lycopersicum), silencing of miR858 significantly 
upregulates MYB7-like, thereby promoting anthocyanin 
accumulation (Jia et al. 2015). Likewise, miR828 nega-
tively regulates anthocyanin biosynthesis under phosphate-
deficient conditions (Xiao-yun et al. 2015). Additionally, 
long non-coding natural antisense transcript (lncNAT-ACoS-
AS1) mediates trans-splicing of the PSY1 gene, encoding 
phytoene synthase, a key enzyme in carotenoid biosynthesis, 
resulting in yellow pigmentation in tomatoes (Xiao et al. 
2020) (Table 3, Fig. 2). Beyond their role in color formation, 
anthocyanins serve as secondary metabolites, modulating 
photosynthesis, filtering UV rays, and enhancing antioxidant 
capacity in fruits and vegetables. In Hippophae rhamnoides 
(sea buckthorn), LNC1 and LNC2 act as endogenous target 
mimics (eTMs) for miR156a and miR828a, respectively, 
modulating the expression of transcription factors SPL9 and 
MYB114, which regulate anthocyanin content (Zhang et al. 
2018) (Table 3, Fig. 2). Similarly, carotenoids, which deter-
mine the color of leaves, flowers, and fruits, also attract pol-
linators and seed dispersers while offering protection against 
photodamage. In sea buckthorn, 61 differentially expressed 
lncRNAs were identified, with 23 specifically expressed in 
red fruit and 22 in yellow fruit, regulating carotenoid bio-
synthesis via cis- and trans-regulatory mechanisms (Zhang 
et al. 2017).

In Morus spp. (mulberry), lncNAT ABCB19 AS, derived 
from the ABCB19 gene, modulates miR477-mediated cleav-
age and enhances anthocyanin accumulation (Dong et al. 
2021) (Table 3, Fig. 2). The regulation of anthocyanin bio-
synthesis in Malus × domestica, an economically significant 
fruit, involves a network of miRNAs, lncRNAs, and tran-
scription factors. Notably, miR828 and TAS4, along with 
MYB1, form a feedback loop that modulates anthocyanin 
biosynthesis, with miR828 expression increasing during 
fruit pigmentation (Zhang et al. 2020a, b, c). A WRKY1-
LNC499-ERF109 cascade also plays a role, with WRKY1 
activating LNC499 expression and subsequently enhancing 
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ERF109, which promotes anthocyanin biosynthesis during 
fruit color development (Ma et al. 2021) (Table 3, Fig. 2). 
Moreover, MLNC3.2 and MLNC4.6, as endogenous tar-
get mimics of miR156, prevent cleavage of SPL2-like and 
SPL33 transcripts, thus influencing photoinduced anthocya-
nin biosynthesis (Yang et al. 2019a, b). Another important 
regulatory pathway, the miR172-AP2-MYB10 module, 
controls flavonoid biosynthesis, with miR172 suppressing 
AP2 to decrease MYB10 expression, resulting in reduced 
anthocyanin content and increased russeting in mature 
apples (Ding et al. 2022) (Table 3, Fig. 2). Additionally, 
light-induced pigmentation in apples is linked to lignin 
metabolism through miR7125, which targets cinnamoyl-
CoA reductase (CCR) and is regulated by MYB16 and 
MYB1 transcription factors, thereby coordinating anthocya-
nin and lignin production (He et al. 2022). In grape (Vitis 
vinifera), overexpression of miR828 in Arabidopsis has been 
shown to downregulate MYB113, resulting in lighter leaf 
color, suggesting miR828’s role as a negative regulator of 
anthocyanin biosynthesis (Chen et al. 2019). Similarly, in 
Actinidia arguta (red kiwifruit), miR858 inhibits anthocya-
nin biosynthesis by targeting MYBC1, a gene encoding an 
R2R3-type MYB transcription factor, with overexpression 
of miR858 leading to reduced anthocyanin accumulation (Li 
et al. 2020) (Table 3, Fig. 2).

In the context of horticultural crops, particularly fruits, 
the size and development of fruit are essential factors 
influencing marketability and consumer preference. In 
Malus × domestica, fruit development is regulated by com-
plex genetic interactions, with the AP2 gene playing a cru-
cial role in fruit size determination. The microRNA miR172 
modulates fruit size by post-transcriptionally silencing AP2, 
and variations in this regulation are influenced by evolu-
tionary adaptations. For instance, a transposon insertion in 
MIR172 leads to reduced miR172 accumulation, resulting 
in larger fruit due to elevated AP2 expression (Yao et al. 
2015) (Table 3, Fig. 2). This highlights the importance of 
miRNA regulation in fruit size, with species-specific varia-
tions observed due to evolutionary selection pressures.

In Solanum lycopersicum (tomato), multiple miRNAs 
are implicated in fruit initiation and size determination. The 
AGO1 s-miR168 interaction plays a critical role in early 
fruit development, while miR159 overexpression induces 
parthenocarpy by silencing the GAMYB1/2 genes, thereby 
affecting fruit initiation and growth (da Silva et al. 2017). 
Moreover, the suppression of miR396a/b using the short 
tandem target mimic (STTM) strategy upregulates growth-
regulating factors (GRFs), promoting fruit enlargement (Cao 
et al. 2016). Conversely, miR171-targeted overexpression of 
GRAS24 results in smaller fruit due to altered hormone bal-
ances, particularly gibberellin and auxin, which negatively 
affect cell division and expansion (Huang et al. 2017). Addi-
tionally, miR164a has been identified as a key regulator of Ta
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tomato fruit growth, as its silencing negatively affects fruit 
size (Gupta et al. 2021). Moreover, the interaction between 
AGO1 proteins and miR168 plays a crucial role in regulat-
ing fruit initiation and growth (Xian et al. 2014) (Table 3, 
Fig. 2).

In Solanum lycopersicum (tomato), miRNAs play a piv-
otal role in shaping fruit morphology. For example, over-
expression of miR166b results in a"fruit-growing-out-of-
fruit"phenotype, while expressing an miR166-resistant REV 
mutant (35S::REVRis) leads to the formation of ectopic 
carpels and fruit fusion. Interestingly, overexpressing REV 
alone does not affect fruit morphology, indicating that its 
function is largely regulated by miR166 post-transcription-
ally (Hu et al. 2014). Another important miRNA, miR160, 
regulates fruit expansion by targeting ARF10 A from the 
Aux/IAA gene family. Silencing miR160 in tomato causes 
elevated ARF10 A expression, which results in pear-shaped 
fruit (Damodharan et al. 2016) (Table 3, Fig. 2).

In Prunus mume (Japanese apricot), lncRNAs regulate 
pistil number, with differential expression of known and 
novel lncRNAs between cultivars leading to changes in 
fruit morphology and interactions with miRNAs like ppe-
miR172 d and ppe-miR160a/b (Wu et al. 2019a). miRNAs 
and lncRNAs influence the flavor and texture of fruits, 
key factors in edible quality. In Fragaria ananassa (straw-
berry), miR399 enhances sugar content, boosting fructose, 
glucose, and soluble solids, which improves fruit quality 

(He et al. 2022, Wang et al. 2017) (Table 3, Fig. 2). In 
Pyrus bretschneideri (Asian pear), miR397a overexpres-
sion reduces lignin and stone cell formation, improving 
taste (Xue et al. 2019). In Malus domestica (Philippot 
et al. 2024), miR7125 targets the CCR gene to balance 
lignin and anthocyanin levels, affecting fruit quality(Hu 
et al. 2021). These molecular mechanisms play a signifi-
cant role in enhancing the edible quality of fruits.

Initial insights into miRNA involvement in ripening 
emerged from tomato (Solanum lycopersicum), where 
miR156 and miR172 negatively regulate SPL-CNR and 
AP2a, key transcription factors essential for ripening (Chen 
et al. 2015; Karlova et al. 2013). Similarly, miR157 over-
expression delays ripening by targeting SPL-CNR (Chung 
et al. 2020), whereas miR1917 enhances ethylene response 
and accelerates ripening by targeting CTR4 spliced vari-
ants (Wang et al. 2018) (Table 3, Fig. 2). In Cucumis melo, 
miR393 overexpression delays ripening by repressing the 
auxin receptor gene AFB2(Bai et al. 2020). In Fragaria 
ananassa, miR397 cleaves FRILAIR lincRNA transcripts, 
with FRILAIR overexpression accelerating ripening (Tang 
et al. 2021). miRNAs influence fruit flavor and texture, 
key determinants of edible quality. In Fragaria ananassa, 
miR399 expression is linked to sugar content, with miR399a 
overexpression significantly increasing fructose, glucose, 
and soluble solids, thereby enhancing fruit quality (He et al. 
2022, Wang et al. 2017) (Table 3, Fig. 2).

Fig. 2   The involvement of various non-coding RNAs (ncRNAs) in 
regulating key quality traits in different horticultural crops. The crops 
are categorized into fruit crops, vegetable crops, ornamental crops, 
plantation crops, and spice crops. Specific ncRNAs associated with 
traits such as color, size, ripening, flavor, texture, reproductive tissue 

development, plant growth, and secondary metabolite production are 
highlighted. Experimentally validated targets and transcription factors 
interacting with these ncRNAs are also indicated, showcasing their 
regulatory influence on plant development and quality enhancement
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Long non-coding RNAs (lncRNAs) are also crucial 
in ripening regulation. In tomato, lncRNAs such as 
lncRNA2155 act as competing endogenous RNAs (ceR-
NAs) for miRNAs, affecting the expression of genes 
involved in ethylene and carotenoid pathways, which are 
key to ripening. The RIPENING INHIBITOR (RIN) tar-
gets lncRNA2155, and its knockout delays ripening (Yu 
et al. 2019a, b). Furthermore, lncRNA ACoS-AS1 regu-
lates carotenoid biosynthesis, influencing fruit color dur-
ing ripening (Xiao et al. 2020) (Table 3, Fig. 2). Together, 
miRNAs and lncRNAs coordinate the complex molecular 
networks that drive fruit ripening.

Reproductive tissue development is a key process in 
the life cycle of fruit-bearing plants, directly influencing 
their reproduction and yield. In tomatoes (Solanum lyco-
persicum), 62% of identified lncRNAs in the Heinz 1706 
variety and 44% in S. pimpinellifolium LA1589 exhibit 
reproductive tissue specificity, playing important roles in 
floral organogenesis and reproductive tissue development 
(Wang et al. 2016). Additionally, a comprehensive study 
in tomato identified 10,919 lncRNAs across leaves, flow-
ers, and roots, with many contributing to floral organo-
genesis (Yang et al. 2019a, b). In mulberry (Morus alba), 
1,133 lncRNAs demonstrate tissue-specific expression, 
some of which are involved in floral organ formation 
(Song et al. 2016) (Table 3, Fig. 2).

Other metabolic processes, such as post-harvest disor-
ders and secondary metabolite production, play a crucial 
role in fruit quality and market value. In navel oranges, 
granulation, a disorder affecting fruit from the stem, 
leads to reduced sugar and organic acid content. Tran-
scriptomic analysis identified 486 ncRNAs involved in 
granulation, regulating genes related to cell wall metabo-
lism, cellulose biosynthesis, and enzyme activity (Yao 
et al., 2020). In Pyrus pyrifolia (Asian pear), the ncRNA 
Pp-miRn182, derived from lncRNA PpL-T31511, regu-
lates type 2 C protein phosphatase 1 (PP2 C1), playing 
a key role in hydrogen cyanide-induced endodormancy 
release (Li et al. 2021) (Table 3, Fig. 2).Browning, a 
common post-harvest issue, affects the appearance and 
storage of fruits. Analysis of enzymatic browning in sand 
pear identified 254 ncRNAs, including PB.15038 and 
PB.156.1, which regulate genes encoding peroxidase 
(POD), polyphenol oxidase, and other enzymes (Fan 
et al. 2021a, b).Secondary metabolites like vitamin C, 
citric acid, flavonoids, and stress-responsive terpenoids 
are essential for fruit quality. In lemon, 11,814 ncRNAs 
were identified, 113 of which were linked to terpenoid 
metabolism, while in peach, 575 lncRNAs were associ-
ated with flavonoid biosynthesis and aroma compound 
accumulation (Bordoloi et al. 2022) (Zhou et al. 2022) 
(Table 3, Fig. 2).

Vegetables

The biosynthesis and accumulation of pigments play a 
critical role in the maturation and ripening of vegetables, 
contributing to their characteristic color transitions and 
influencing their nutritional and health-promoting prop-
erties. Pigment accumulation is predominantly regulated 
by the progression of ripening stages and is crucial for 
post-harvest storage and quality management. Color in 
vegetables is primarily determined by the accumulation 
of anthocyanins, carotenoids, and other pigments. In Cap-
sicum annuum (bell pepper), 2,505 lncRNAs have been 
identified, with 1,066 differentially expressed during fruit 
development, many of which regulate carotenoid biosyn-
thesis by targeting pigment-related genes through cis or 
trans interactions (Ou et al. 2017) (Table 3, Fig. 2).

In leafy vegetables like Lactuca sativa (lettuce), 
miRNA-mediated regulation plays a crucial role in deter-
mining leaf and achene size. Overexpression of miR408 
enhances both traits by downregulating copper-related 
target genes, while miR396a overexpression negatively 
impacts leaf expansion through suppression of GRF5, a 
critical gene for plant growth and development (Zhang 
et al. 2021) (Table 3, Fig. 2). Furthermore, by concentrat-
ing on GRAS family members (SCL6/27), overexpression 
of miR171b in Brassica oleracea (broccoli) enhances chlo-
rophyll levels in the leaves (Li et al. 2018). Similarly, broc-
coli miR390a ectopic expression in Arabidopsis stimulates 
the development of lateral organs and increases biomass 
(He et al. 2020) These studies highlight the significant role 
of miRNAs and lncRNAs in controlling the size and devel-
opment of key vegetable crops, influencing their growth 
and productivity. Studies on potato sprouting have revealed 
that 723 lncRNAs show significant expression changes as 
tubers transition from dormancy to sprouting, influencing 
cellular and metabolic processes in apical buds. Notably, 
the lncRNA StFLORE and StCDF1 are involved in tuber 
development and drought response(Ramírez Gonzales 
et al. 2021). In Capsicum chinense, transcriptome analysis 
identified 2,525 lncRNAs, 47 miRNAs, and 71 circRNAs, 
with downregulation of miR156, miR169, and miR369 
indicating their role in regulating growth vigor in hybrid 
peppers (Shu et al. 2021) (Table 3, Fig. 2).

In vegetables, miRNA-mediated regulation plays a cru-
cial role in determining morphological traits. In Brassica 
rapa (Chinese cabbage), overexpression of MIR319a alters 
leaf architecture by suppressing TCP4, resulting in wavy 
leaf margins and altered leafy heads (Mao et al. 2014). 
Similarly, MIR166 g overexpression affects leaf curva-
ture, further influencing vegetable shape (Ren et al. 2018). 
Additionally, miR164 targets NAC transcription factors 
involved in ethylene-induced leaf senescence, suggesting 
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a potential strategy for improving leafy vegetable quality 
(Li et al. 2013a, b, c) (Table 3, Fig. 2).

Vernalization, the process by which prolonged cold 
exposure induces flowering, is a critical requirement for the 
flowering of several crops. In Beta vulgaris, three long non-
coding RNAs (lncRNAs)-GL15X1, AGL15X2, and CAULI-
FLOWERA have been identified as key mediators of the ver-
nalization response, regulating the timing of flowering under 
cold conditions (Liang et al. 2017). Additionally, lncRNAs 
are involved in the regulation of pollen development and 
fertility. In Brassica campestris, the pollen-specific lncRNA 
BcMF1 is essential for efficient pollen germination and tube 
elongation. Knockdown of BcMF1 leads to abnormalities in 
pollen development, delayed tapetal degradation, and pollen 
atrophy, highlighting its crucial role in reproductive success 
(Song et al. 2013) (Table 3, Fig. 2).

Ornamental plants

Ornamental plants, renowned for their aesthetic appeal, 
exhibit intricate mechanisms of pigment biosynthesis and 
accumulation, which are pivotal in determining their char-
acteristic coloration. Pigments such as anthocyanins, carot-
enoids, and flavonoids play key roles in this process, with 
regulation occurring through complex networks of miRNAs, 
long non-coding RNAs (lncRNAs), and transcription fac-
tors. In Ginkgo biloba, a species noted for its golden autumn 
foliage, lncRNAs and transcription factors are involved in 
the regulation of leaf pigmentation, with pathways linked to 
chloroplast thylakoid membranes and photosynthesis playing 
a crucial role (Wu et al. 2019a, b) (Table 3, Fig. 2).

In ornamental plants, miRNAs and lncRNAs play a key 
role in shaping floral morphology. In Liriodendron chinense, 
a tree valued for its ornamental leaves and tulip-like flow-
ers, miRNA-lncRNA-transcription factor networks regu-
late phenylpropanoid metabolism, affecting flower and leaf 
development. Key regulators identified include lch-lnc7374-
miR156 h and lch-lnc7374-miR156j, which influence sta-
men and pistil development, respectively (Tu et al. 2022). In 
Rosa hybrida, ethylene regulates RhNAC100 expression via 
miR164, influencing petal size. Silencing NAC100 enhances 
petal cell expansion, leading to larger petals, while its over-
expression results in smaller petals (Pei et al. 2013) (Table 3, 
Fig. 2).

In Rosa hybrida (rose), long non-coding RNAs (lncR-
NAs) play a pivotal role in regulating floral scent production, 
with differential expression of 425 lncRNAs identified dur-
ing flowering stages. These lncRNAs target genes involved 
in scent synthesis, offering insights into the genetic control 
of fragrance (Shi et al. 2022). Similarly, in Jasminum sam-
bac (jasmine), lncRNAs influence the production of floral 
scents, with differentially expressed lncRNAs associated 
with terpenoid and phenylpropanoid biosynthesis pathways 

(Lu et al. 2023) (Table 3, Fig. 2). These studies underscore 
the critical role of lncRNAs and miRNAs in the size, scent, 
and color of ornamental plants, providing valuable insights 
for breeding and horticultural improvements.

Ipomoea nil, known for its diverse flower colors, has been 
studied for its lncRNA profiles. A recent study using whole 
transcriptome RNA sequencing identified 11,203 lncRNAs, 
including 961 known and 10,242 novel lncRNAs in I. nil. 
These findings contribute to understanding the genetic regu-
lation of flower color and development (Zhou et al. 2023). 
In Cymbidium ensifolium, a miR172-AP2-like module gov-
erns petal formation, contributing to multi-tepal flowers 
(Yang et al. 2015) (Table 3, Fig. 2). Transcriptome analysis 
of multi-tepal orchids revealed miR156-SPL and miR167-
ARF modules involved in reproductive organ development, 
as well as the miR319-TCP4-miR396-GRF cascade regu-
lating cell proliferation (Yang et al. 2017). In Chrysanthe-
mum indicum, miR396a targets GRF1 and GRF5, affecting 
internode elongation and epidermal hair density (Liu et al. 
2021) (Table 3, Fig. 2). Camellia oleifera, an evergreen 
shrub from the Theaceae family, is a key oil source used 
in various products. Despite prolific flowering, seed pro-
duction remains low, with limited understanding of flower 
bud development. A study on gene expression, long non-
coding RNA (lncRNA), and miRNA during anther devel-
opment revealed 18,393 transcripts, 414 lncRNAs, and 372 
miRNAs. Differential expression analysis identified 5,324 
genes, 115 lncRNAs, and 44 miRNAs. Gene ontology 
showed lncRNA targets in anther development processes, 
while miRNA targets were linked to microspore develop-
ment. Interaction networks identified key miRNA families 
and lncRNAs involved in pollen wall formation (Kong et al. 
2022). The timing and duration of flowering are essential 
for plant reproduction and their commercial value, with 
miRNA-target modules playing critical roles in floral tran-
sition. In Sinningia speciosa, miR159 delays flowering by 
targeting GAMYB, whereas miR172 promotes flowering 
by suppressing AP2 (Li et al. 2013a, b, c) In Chrysanthe-
mum morifolium, silencing NF-YB8 induces early flower-
ing, which can be reversed by miR156 overexpression (Wei 
et al. 2017). Similarly, in Petunia hybrida, overexpression of 
miR156/157 delays flowering through the targeting of SPLs 
(Zhou et al. 2021) (Table 3, Fig. 2).

Plantation crops

Tea is a widely consumed non-alcoholic beverage, valued for 
its secondary metabolites (SMs) such as catechins, theanine, 
caffeine, and volatile compounds, which contribute to its 
flavor and health benefits (Jia et al., 2021). Several ncRNA-
mediated regulatory pathways influence SM biosynthesis in 
tea leaves. miRNAs, including miR156, miR164a, miR166a, 
miR167 d, and miR396 d, regulate catechin accumulation 
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by targeting key transcription factors like SBP3, NAC, HD-
ZIP4, ARF, and GRFs (Zhao et al. 2020)These regulatory 
modules potentially interact with phytohormones such as 
IAA, JA, ABA, ZA, and SA, although direct evidence is 
lacking. Additionally, miR169 has been experimentally 
validated to regulate caffeine and theanine synthesis by 
targeting NF-YA, with its expression positively correlating 
with these metabolites (Zhao et al. 2020) (Table 3, Fig. 2). 
Long non-coding RNAs (lncRNAs) also play a crucial role 
in tea plant metabolism. Transcriptome analyses identified 
32,036 lncRNAs across different developmental stages and 
tissue types, with some specifically linked to flavonoid and 
terpenoid biosynthesis. Notably, LTCONS_00026271 and 
LTCONS_00020084 function as endogenous target mimics 
(eTMs) for novel_miR44 and miR169 d- 5p_1, respectively, 
promoting volatile terpenoid accumulation in withered tea 
leaves (Zhu et al. 2019). These findings highlight the com-
plex genetic regulation of tea quality traits, offering poten-
tial targets for breeding and metabolic engineering (Table 3, 
Fig. 2).

Spice crops

MicroRNAs (miRNAs) play a crucial role in regulating 
secondary metabolite biosynthesis, although their precise 
involvement remains largely unexplored. In Nigella sativa 
(black cumin), a medicinal plant with limited genomic data, 
next-generation sequencing (NGS) was employed to profile 
miRNAs and investigate their role in secondary metabolism. 
A total of 240 conserved and 34 novel miRNAs were iden-
tified, targeting 6,083 potential genes involved in key bio-
synthetic pathways, including terpenoid, phenylpropanoid, 
flavonoid, and carotenoid metabolism. qPCR validation con-
firmed the expression patterns of selected miRNAs, reinforc-
ing their regulatory function. This study provides valuable 
insights into miRNA-mediated control of secondary metabo-
lism and potential strategies for metabolite enhancement in 
N. sativa (Uriostegui-Pena et al. 2024) (Table 3, Fig. 2).

Gingerols, the primary bioactive compounds in ginger 
(Zingiber officinale), are known for their significant health 
benefits. A combined metabolomic and transcriptomic 
analysis of three major ginger cultivars in China identified 
744 metabolites, including 21 gingerol derivatives, with 
shogaol and gingerol showing significant accumulation. 
Transcriptomic analysis further revealed 16,346 long non-
coding RNAs (lncRNAs), with differentially expressed 
lncRNAs linked to secondary metabolism and hormone 
responses. Correlation analysis identified key gingerol 
biosynthesis enzyme genes (GBEGs) alongside transcrip-
tion factors such as MYB1, ERF100, and WRKY40, as 
well as 1,184 potential regulatory lncRNAs. Additionally, 
protein–protein interaction analysis suggested that MYB4, 
MYB43, and WRKY70 interact with essential GBEGs, 

including PAL1, PAL2, PAL3, and 4 CL- 4(Table 3, Fig. 2). 
This study proposed a comprehensive regulatory network 
involving lncRNAs, transcription factors, and GBEGs 
in gingerol biosynthesis, offering novel insights into the 
genetic and molecular mechanisms governing gingerol 
metabolism (Zhang et al. 2023).

Conclusion

While significant advances have been made in understand-
ing the roles of non-coding RNAs (ncRNAs) in plants, 
several research opportunities remain. ncRNAs regulate 
essential processes in plants, including ripening, growth, 
pigmentation, secondary metabolite biosynthesis, and 
reproductive development in crops such as fruits, vegeta-
bles, and plantation crops. Advances in transcriptomic and 
metabolomic integration have deepened our understand-
ing of ncRNA-mediated regulatory networks. However, 
cross-tissue and developmental stage analyses should be 
prioritized to better understand how these RNAs coordi-
nate gene expression across different plant organs. In met-
abolic engineering, ncRNAs offer potential for enhancing 
the nutritional value, flavor, and health properties of crops.

The conservation of ncRNAs across species highlights 
the need for extensive species-specific data collection and 
improved prediction models. Further research is needed in 
plantation crops, such as tea, to explore the regulation of 
secondary metabolites like catechins and theanine, and in 
vegetable ripening to improve post-harvest quality. ncR-
NAs may also be harnessed for ornamental plant breeding, 
regulating traits like color and scent. Further improvement 
in the computational tools, including RNA sequencing, 
bioinformatics pipelines, and machine learning algo-
rithms, can be pivotal in uncovering the functional roles 
of miRNAs and lncRNAs. Furthermore, developing user-
friendly tools for both Linux and Windows systems will 
enhance research accessibility. RNA interference technolo-
gies and genome editing tools like CRISPR-Cas provide 
promising avenues for utilizing ncRNAs to improve crop 
yield and quality.
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Abstract
Background  Cold stress is an upcoming challenge for rice (Oryza sativa L.) cultivation, especially at the seedling establish-
ment stage. It causes serious constraints in its production and productivity as it is a thermophilic cereal crop. North-western 
Himalayan region has a rich repository of temperate rice genotypes, and there is a need to identify cold-tolerant rice varieties 
from these available genetic resources.
Methods and results  The present study screened 90 rice accessions (indica and japonica) grown in the high-altitude regions 
at 2200 m amsl for cold tolerance (5 °C) at the seedling stage, and found 14 highly cold-tolerant accessions. Almost eighty 
per cent of the indica types clustered into cold-sensitive class. One cold-tolerant japonica (GS-74) accession and one cold-
susceptible (SR-4) accession were used to compare their biochemical and gene expression response during cold stress and 
after recovery. A wide range of differences was noticed at different time points in the accumulation of ROS scavengers, osmo-
protectants and antioxidant enzymes, with significant differences between the contrasting genotypes. Similarly, gene expres-
sion of five transcription factors OsMYB4, OsAP37, OsDREB1A, OsDREB1B and OsDREB1D revealed their role in cold 
responsiveness at the seedling stage, critically modulating the cold-induced osmoprotectant-mediated tolerance mechanism.
Conclusion  This is the first study that explored the high-altitude Himalayan rice germplasm for cold tolerance at the critical 
S3 seedling stage under controlled conditions. It demonstrated that the upregulation of OsDREB1A, OsDREB1B, OsMYB4 
and OsAP37 transcription factors modulates cold stress response in rice via a complex mechanism involving ROS scavengers 
and osmoprotectants.

Keywords  Oryza sativa L. · Cold stress · Himalayas · Antioxidants · Gene expression

Introduction

Rice (Oryza sativa L.) is the second most-consumed cereal 
in the world, with over 3.6 billion people around the globe 
(50% population) taking it as an essential meal in their diets. 
Over 400 million people worldwide are associated with rice 
production, and Asia produces more than 90% of the world’s 
rice [1]. Since rice is a thermophilic crop and a sensitive 

agro-ecosystem, cold stress affects it adversely [2]. Due to 
cold stress, about 15 million hectares of land worldwide is 
unsuitable for rice cultivation [3, 4]. The optimum seed ger-
mination temperature for rice is 25 °C, while temperatures 
below 15 °C cause a severe decrease in germination, vigour 
and seedling emergence, which further results in delayed 
initial growth and seedling establishment, yellowing of the 
leaves, overall growth inhibition, late and limited tillering 
as well as high seedling mortality [5]. With a drop in tem-
perature, grain loss of approximately 26% ranging from 0.5 
to 2.5 t/ha has been recorded [6, 7].

Plants respond to abiotic stresses at the molecular level 
through signal perception, transduction, gene expression 
alterations, and metabolic changes [8]. The common effects 
caused by stress are increased production of intracellular 
Reactive-Oxygen Species (ROS), including superoxide 
anion (O2•−), hydroxyl radical (•OH), as well as non-radical 
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molecules like hydrogen peroxide (H2O2), singlet oxygen 
(1O2) [9, 10]. ROS are major signalling molecules that main-
tain the plant’s normal growth and responses to stress. If 
left unchecked, ROS levels in cells rise, causing irreversible 
damage to membranes (lipid peroxidation), DNA, RNA, and 
proteins, altering tissue and organ development, stomatal 
activity, and eventually programmed cell death (PCD) [11]. 
A network of transcription factors and regulatory genes that 
modulate defence enzymes, proteins, and pathways is essen-
tial for plants’ tolerance to abiotic stresses [12–16]. Elucidat-
ing these molecular mechanisms of specific gene activation/
repression through transcription factors is essential for crop 
improvement [17, 18].

Based on the available literature, we chose five stress-
responsive transcription factors OsMYB4, AP37, DREB1A, 
DREB1B, and DREB1D for the present study. Except AP37, 
the rest of the transcription factors are known for their role 
in drought and salt stress [19, 20]. Anther-specific aspartic 
protease (AP37), though involved in tapetal programmed 
cell death (PCD), has also been implicated in drought toler-
ance [21]. While there is a limited understanding about the 
involvement of these transcription factors in cold tolerance 
in rice, we aimed to investigate their role in the metabolic 
adjustments that aid rice plants in responding to cold stress. 
Furthermore, the Himalayan rice germplasm accessions are 
assumed to possess cold tolerance, but this claim needed val-
idation under controlled conditions [2, 22, 23]. The present 
study repudiated the assumption and fished out 14 cold-tol-
erant rice genotypes, which would help breed cold-tolerant 
rice varieties. One cold-tolerant japonica accession (GS-74) 
and one cold-susceptible indica accession (SR-4) were com-
pared under cold stress and post-stress recovery phase for 
gene expression of transcription factors Oryza sativa myelo-
blastosis transcription factor 4 (OsMYB4), Aspartyl protease 
37 (AP37), Dehydration-responsive element-binding protein 
1 (DREB1A, DREB1B, DREB1D), and biochemical profiles 
of important metabolites as well as phenotypic characters 
to advance our understanding into their role in cold-stress.

Materials and methods

Planting material

Over one hundred rice accessions were collected from 
high-altitude areas of the Western Himalayas (30.25–35.20 
N latitude and 74–75.25 E longitude), primarily landraces 
cultivated at 2200 m above mean sea level (amsl) or higher. 
These were purified for five years at the Mountain Research 
Centre for Field Crops, Khudwani, India, and genetic sta-
bility and diversity were determined using Distinctness, 
Uniformity, and Stability (DUS) descriptors of the Inter-
national Rice Research Institute [22, 23]. At a temperature 

of 30 °C and relative humidity of 60–80%, ninety different 
rice accessions from the indica and japonica ecotypes were 
germinated in petri dishes within a seed germinator. Seeds 
were then sown in triplicates in plastic pots filled with clay 
soil (0.5 kg each) and kept in a walk-in plant growth cham-
ber under controlled conditions (16 °C, relative humidity 
60–80%, photoperiod 16/8 h day/night, and light intensity 
3000 lm/m2). Two-week-old seedlings were transplanted into 
pots (one in each pot) containing a 2:1:1 mixture of clay, 
sand, and FYM (5 pots for each accession) and grown in a 
walk-in plant growth chamber at a temperature of 25 ± 2 °C 
and relative humidity of 60%.

Screening for cold tolerance

Twenty-day-old seedlings were subjected to cold stress at 
5 °C for seven days (Fig. 1) and were scored on LD Scale of 
0–9 as per the Standard Evaluation System (SES) for rice 
[24–26]. The screening of the entire germplasm set was 
repeated twice, and the highest score (9) was assigned to 
accessions that resulted in the death of the largest number 
of seedlings (highly susceptible) and the lowest score (0) to 
those that exhibited no damage to the leaves/plants (strongly 
resistant) (Table 1S).

Gene expression analysis

Sample collection

The selected resistant (R) and susceptible (S) rice accessions 
were grown in a plant growth chamber at 25 °C and relative 
humidity of 60–80% till the seedling (S1) stage. Cold stress 
(5 °C) was given to twenty-day-old rice seedlings for 24 h, 
and the leaf samples (200 mg) were collected at five differ-
ent time points as per the following details: 0 h before cold 
stress (T0), 2 h (T1), 6 h (T2), 24 h during cold stress (T3), 
and 24 h after stress recovery at 25 °C (T4).

The samples were immediately immersed in RNA later 
(Sigma Aldrich), and stored in 2 ml microfuge tubes (Tar-
son) at − 80 °C for expression analysis.

RNA extraction:

RNA was extracted from leaf samples according to the 
manufacturer’s instructions using Trizol reagent (Genetix 
Biotech.). The quality and quantity of RNA were deter-
mined using agarose-formaldehyde gel electrophoresis 
and spectrophotometry. Thermo Scientific US’s Revert 
Aid first-strand cDNA synthesis kit was used to synthe-
size first-strand cDNA. The real-time PCR reactions were 
performed with a CFX96 Real-Time PCR detection sys-
tem (Bio-Rad) in 96 well plates in triplicates using SYBR 
Green master mix (Bio-Rad Laboratories) with actin gene 
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as endogenous control [27]. The amplification was carried 
at 95 °C for 2 min incubation and 39 cycles of 95 °C for 
30 s, 95 °C for 5 s, varied amplification temperatures for 
different primers (58 °C for OSMYB4, 57.5 °C for AP37, 
57 °C for DREB1A, 55.5 °C for DREB1B and 59 °C for 
DREB1D), followed by final extension of 72 °C for 30 s. 
The supporting table (Table 2S) shows the primer details. 
The relative expression of each sample was calculated 
using the ΔΔCT method [28].

Biochemical analysis

As detailed above, leaf samples collected at five different 
time points were dipped in liquid N2 for 30 s and imme-
diately stored in a deep freezer at − 80 °C. The samples 
were analyzed for osmoprotectants, viz. free proline [29], 
glycine betaine [30], sucrose [31], glucose [32]. Antioxi-
dant enzyme activities were estimated for SOD [33, 34], 
CAT [35], APOD [36], Glutathione reductase [37]. The 
total antioxidant activity was determined by the Phospho-
molybdenum method [38]. Ascorbate and Glutathione con-
tents were estimated as described by [39, 40], respectively.

Statistical analysis

The screening of tolerant and susceptible accessions was 
done using a completely randomized design (CRD), and 
analyzed by ANOVA using Graphpad Prism and Opstat 
softwares [41, 42]. For biochemical analyses, the experi-
ment was laid in CRD with five levels of treatment. The 
data were interpreted according to two-way ANOVA using 
CPCS1 statistical software, Dunn-Sidak and Tukey tests 
for pairwise comparisons using Graphpad Prism [43, 44]. 
Each treatment had at least three replicates for estimating 
biochemical parameters and ten for estimating phenotypic 
characters. The data are presented as mean ± SE in figures, 
and the number of biological replicates is mentioned under 
each figure.

Results and discussion

Rice is an important cereal crop and is consumed by over 
half of the world’s population. The current study screened 
ninety Himalayan rice accessions for cold tolerance 
(Fig. 1S), and classified them into different categories of 
cold stress tolerance (Fig. 2S). The present study highlights 
several critical aspects of subcellular activities that occur in 
rice seedlings at S3 stage under severe cold stress of 5 °C. 

Fig. 1   Twenty day old seedlings of rice genotypes subjected to 
cold stress treatment at 5 °C for 7 days: a Resistant genotypes (GS-
74, GS-51, GS-34, GS-37, GS-49, GS-88) showing no symptoms 
of stress; b Moderately resistant genotypes (Jehlum, Mushk budji, 
GS-61, Kamad, K-78) with almost half seedlings dry and having 
turned pale yellow; c Susceptible genotypes (IR-42, PS-3, SR-4, 

SR-3, SR-2) with maximum seedlings dead and dehydrated; d Geno-
types after cold stress- resistant (left two), moderately tolerant (cen-
tral two) and susceptible (left two); e Cold susceptible SR-4 (Lt) and 
cold tolerant GS-74 (Rt) genotypes selected for molecular and bio-
chemical studies
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Rice seedlings responded to cold stress by accumulating 
osmolytes like proline, glycine betaine, and soluble sugars, 
which are known to activate defence-related genes, lower 
the cellular water potential, maintain turgor high pressure 
sufficient for growth, and protect cellular membranes from 
desiccation and cold damage. Cold stress caused ROS eleva-
tion in the rice seedlings. Since superoxide radicals are toxic 
to cells, antioxidant machinery was activated to reduce H2O2 
levels and protect the plants from cold-induced ROS produc-
tion [45–47].

Proline and glycine‑betaine (GB) content

In the present study, proline (proteinogenic amino acid) 
content of the resistant genotype increased significantly 
for 24 h of chilling cycle compared to the susceptible 
genotype and decreased significantly post-24 h of chilling 
(Table 3S; Fig. 2a). Similar proline content variations were 
observed in earlier studies on rice plants [48, 49]. Once 
plants are exposed to stress, it is well known that they 
accumulate high levels of proline in the cytoplasm and 

chloroplast [50, 51]. The role of proline in singlet oxygen 
quenching, ROS scavenging, and sub-cellular structure 
stabilization makes it important for cold tolerance [52, 53].

Plants increase their cell osmolality under abiotic stress, 
and Glycine-betaine (GB), a quaternary amine, plays an 
important role in the process. In the present study, gly-
cine betaine content followed a similar trend as proline. 
GB content increased sharply due to cold stress in the 
susceptible genotype (SR-4), reaching a maximum value 
at 24 h (Table 1; Fig. 2b) [54, 55], but it was significantly 
lower than in the tolerant genotype (GS-74). Both gen-
otypes showed a decline in its concentration during the 
post-chilling recovery phase. In a similar study, glycine 
betaine content in rice genotypes increased five-fold under 
cold stress [56]. The interactions based on Sidak’s mul-
tiple comparisons test between treatments and genotypes 
imply that proline and glycine-betaine levels vary between 
the contrasting genotypes and play a significant role in 
tolerating cold stress (Table 3S).

Fig. 2   Osmolyte and sugar contents evaluated in 2 distinct rice gen-
otypes under cold stress. The selected resistant and susceptible rice 
genotypes subjected to cold stress (4 °C) at S3 stage in plant growth 
chamber and the leaf sample at 0  h, 2  h, 6  h, 24  h, and P24 (24  h 

recovery post chilling) from both genotypes (highly resistant and 
highly susceptible) showed differential response in osmolyte: a Pro-
line, b Glycine betaine, c Glucose, d Sucrose
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Soluble sugars

In the present study, the glucose and sucrose content was 
significantly higher in the resistant genotype than in the sus-
ceptible genotype. The average glucose content was nearly 
3 times that of the tolerant genotype (15.4 mg/g dwt) com-
pared to the susceptible genotype (4.40 mg/g dwt) (Table 1) 
(Fig. 2c). Up to 24 h under cold stress, both susceptible 
and tolerant genotypes showed a similar increasing trend 
in sucrose content (Table 1), which is consistent with ear-
lier studies [57, 58]. However, there was a decline in the 
post-chilling recovery phase. Notably, the tolerant genotype 
maintained a higher sucrose concentration at all time points 
than the susceptible genotype (Fig. 2d).

Soluble sugars help plants withstand stress [59]. The pre-
sent study demonstrated that sucrose and glucose contents 
were higher in the cold-tolerant genotype under cold stress, 
as these are used as substrates for cellular respiration and act 
as osmolytes to maintain cell homeostasis. Time duration 
had no significant effect on the soluble sugar content of rice 
plants (Table 3S; Fig. 2). In stressful situations, sucrose and 
glucose serve as cellular respiration substrates or osmolytes 
[60, 61]. Similar variations in the soluble sugar content were 
observed in earlier studies [57, 58]. Rice plants accumulate 
glucose in an increasing trend under cold stress, as reported 
by Ito et al. [48] and Tian et al. [62].

Oxidant/antioxidant status

In the present study, cold stress significantly increased 
catalase, superoxide dismutase, ascorbate and acorbate per-
oxidase activity in plants for 24 h of the chilling cycle in 
both susceptible and resistant genotypes (Table 2), and this 
change was significant for resistant compared to susceptible 
genotype at each time point (Table 4S; Fig. 3a–d). Post-24 h 
of the cold cycle, there was a significant decrease in catalase 
and SOD activity in both genotypes. Catalases and superox-
ide dismutase directly dismutase H2O2 into H2O and O2 [63]. 
A study by de Freitas et al. in rice showed that CAT activity 
increased fivefold during cold stress [58]. In the same study, 
SOD content increased more than 1.5-fold during cold stress 
(10 °C) for 72 h [58]. In another study on rice biochemical 
analyses at 15 °C for 4 days, SOD content increased during 
cold stress [64]. A previous study [65] on rice seedlings 
exposed to 4 °C for 7 days followed by a 2-day recovery 

phase found that APX activity increased rapidly in toler-
ant cultivars and continued to increase even after recovery, 
while APX activity decreased in susceptible cultivars both 
at the start of low temperature and during recovery.

Tripeptide glutathione (GSH) and Glutathione reductase 
(GR) play important roles in stress tolerance. GSH is an 
essential metabolite for intracellular defence against ROS 
damage in plants, and is abundant in reduced form in plant 
tissues [66]. GR is an ASH-GSH cycle enzyme which main-
tains the reduced status of GSH. GR reduces GSH, which is 
involved in many plant metabolic and antioxidant processes. 
In the present study, cold stress increased GR content sig-
nificantly till 2 h of chilling in both the genotypes, which 
increased further at 24 h of chilling (Fig. 3e). The total glu-
tathione increased significantly till 24 h of chilling in both 
genotypes, and then declined in the recovery phase (Fig. 3f). 
A previous study has reported that cold stress increases GR 
content in rice [64]. A previous study on sensitive and tol-
erant rice seedlings exposed to 4 °C for 7 days and then 
2 days of recovery showed that the GR activity in tolerant 
cultivars increased during the chilling and recovery phases, 
while the GR activity in sensitive cultivars decreased during 
the chilling and recovery phases [65]. Another study [47] 
has reported that cold stress (8 °C) reduced GR content in 
two 7-day-old indica rice cultivars. These studies support 
our observations, demonstrating that when rice plants are 
exposed to cold stress, they release ROS detoxifying cata-
lases and SODs, ascorbate and ascorbate peroxidase and that 
these antioxidant defence mechanisms become critical for 
their survival in the high altitude cold-temperate climates 
of the Himalayas (Fig. 4). There were significant differ-
ences between resistant and susceptible genotypes under 
cold stress in the total antioxidant activity (TAA) (Tables 3 
and 4S). A sharp increase in TAA was recorded in both 
genotypes from 6 h, reaching a maximum at 24 h (Fig. 3g; 
Table 3). The TAA declined sharply during the post-chilling 
recovery phase. In an earlier study on the redox mechanism 
in rice under abiotic stress, TAA content increased during 
cold stress [47]. Similarly, in another study, DPPH assay 
revealed higher antioxidant activity in tolerant genotypes 
under cold stress [58]. The results in the present and earlier 
studies reveal that as a redox mechanism in rice, TAA con-
tent increases during cold stress and is critical for survival 
at lower temperatures.

Gene expression of some key transcription factors 
under cold stress

Transcription factors are proteins that activate and/or repress 
the transcription process. More than 2000 recognized and 
anticipated rice transcription factors are disbursed between 
63 families [67]. Several families of these transcription 

Fig. 3   Antioxidant content evaluated in 2 distinct rice genotypes 
under cold stress. The selected resistant and susceptible rice geno-
types subjected to cold stress (4 °C) at S3 stage in plant growth cham-
ber and the leaf sample at 0 h, 2 h, 6 h, 24 h, and P24 (24 h recov-
ery post chilling) from both genotypes (highly resistant and highly 
susceptible) showed differential response in: a Catalase, b SOD, c 
Ascorbate, d APX (Ascorbate Peroxidase), e Glutathione content, f 
Glutathione reductase, g Total anti-oxidant activity (TAA)

◂
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factors have been implicated in stress responses [68]. Based 
on the available literature, we selected five transcription 
factors (DREB1A, DREB1B, DREB1D, OSMYB-4 and 
AP-37) and studied their expression pattern at 5 °C in the 

two contrasting rice genotypes at different time points [0 h, 
2 h, 6 h, 24 h, and P24 (24 h recovery post chilling)] at seed-
ling stage (Table 4; Figs. 5, 3S).

Fig. 4   Heatmap of the coefficients of the Spearman correlation matrix between the variables time period and biochemical assays in susceptible 
and resistant genotypes

Table 3   Effect of cold stress on glutathione reductase, glutathione content and total antioxidant activity

The superscripts (a-e) or (a#-e#) within the respective genotype columns indicate that within these genotypes, treatments with the same super-
script are statistically at par with each other (at the indicated p-value)

Treatment Genotypes

Glutathione reductase 
(U min−1 g−1 fw)

Glutathione (µM) Total antioxidant activity (μM g−1 dw)

SR-4 GS-74 Mean SR-4 GS-74 Mean SR-4 GS-74 Mean

T1 (0 h) 0.96d 1.28e# 0.26 3.95e 5.16d# 4.55 0.16b 0.25b# 0.21
T2 (2 h) 1.28b 1.60b# 0.29 5.16c 7.34c# 6.25 0.15b 0.28b# 0.21
T3 (6 h) 1.17c 1.34d# 0.35 5.17b 7.65b# 6.41 0.15b 0.30b# 0.23
T4 (24 h) 1.92a 2.25a# 0.39 5.61a 8.32a# 6.96 0.23a 0.43a# 0.33
T5 (P24 hrs) 1.28b 1.43c# 0.39 4.25d 4.26e# 4.25 0.13b 0.27b# 0.20
Mean 1.32 1.58 4.83 6.54 0.16 0.30
CD (p ≤ 0.05) CD (p ≤ 0.05) CD (p ≤ 0.05)
Genotype (A): 0.129 Genotype (A): 0.017 Genotype (A): 0.023
Treatment (B): 0.205 Treatment (B): 0.028 Treatment (B): 0.036
Interaction AXB: NS Interaction AXB: 0.040 Interaction AXB: 0.012
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Dehydration‑responsive element binding proteins 
(DREB1A, 1B and DREB1D)

Several stress-responsive genes have been demonstrated to 
bind DRE (A/GCC​GAC​) and DRE-like cis regions and acti-
vate their expression using the DREB/CBF transcription fac-
tors [69, 70]. Overexpression of OsDREB1A, OsDREB1B, 
and OsDREB1D in rice and OsDREB1D in Arabidopsis 
promotes increased cold tolerance in transgenic plants 
[71–73]. The DREB1A gene showed early induction (2 h) 
and increased approximately 4-folds at 6 h in the resistant 
accession (GS-74) in our investigation on 4 weeks old rice 
seedlings under cold stress (at 5 °C), followed by a sharp 
reduction in its expression at 24 h after recovery. The sus-
ceptible accession (SR-4) had a non-significant modifica-
tion in its expression (Table 4, Fig. 5). These findings align 
with a study [74] on 14-day-old rice seedlings exposed to 
cold stress (5 °C) for 24 h. In a previous investigation on 
17-day-old rice seedlings exposed to cold stress (4 °C), the 
OsDREB1A gene began to express after 40 min, increased 
for 5 h, and then declined [71]. OsDREB1A was shown to be 
upregulated by cold at 6 h, reaching a maximum of 18-fold 
at 12 h, followed by a decrease in expression at 24 h in 
another investigation on transcriptional profiling of 14-day-
old cold-tolerant rice seedlings under cold stress (5 °C for 
48 h) [75]. Contrary to earlier studies, comparative transcrip-
tome profiling in tolerant and susceptible genotypes during 
cold stress at the S3 stage revealed that OsDREB1A expres-
sion is induced at 2 h and peaks at 24 h [27].

In the present study, DREB1B gene expression enhanced 
at 2 h of cold stress and increased up to 24 h with a maxi-
mum at 24 h of 3.8-fold in resistant accession (GS-74), while 
in susceptible accession (SR-4) there is a mild expression 
under cold stress at 2 h which decreased with time (Table 4, 
Fig. 5). In an earlier study on transcriptional profiling of 
14 days old cold-tolerant rice seedlings under cold stress 
(5 °C for 48 h), OsDREB1B, got induced by cold at 6 h, 
reaching a maximum of 20-fold at 24 h [75]. In a recent 
study, expression analysis of OsDREB1B in 2-week-old rice 
seedlings at 11 °C for 24 h showed around eightfold tran-
script induction in rice leaves. In the present study, DREB1D 
gene expression decreased at the beginning of cold stress 
(2 h), and later (at 6 h) increased sharply (nearly sixfold) 
in the resistant genotype. In the susceptible genotype, its 
expression reached a maximum value at 24 h under cold 
stress. In contrast, surprisingly, its expression dropped dras-
tically in the resistant genotype (nearly 4-folds) (Table 4, 
Fig. 5). Expression analyses of 2-week-old rice seedlings 
at 11 °C for 24 h showed around fourfold OsDREB1D tran-
script induction in rice leaves [76], while in an earlier study, 
Dubouzet et al. [71] on 17 days old rice seedlings under 
cold stress (4 °C), OsDREB1D expression was not detected 
in plants under cold stress. The disparities in expression Ta
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profiles between studies can be attributed to the differences 
in cold stress temperature, cold stress duration, and time 
points of sample collection.

AP37

AP37, a member of the APETELA2 (AP2) subfamily is 
an anther-specific aspartic protease involved in tapetal 
programmed cell death (PCD). In the present study, AP37 
expression increased in the resistant genotype till six hours 
of chilling (3.6 fold) and decreased at 24 h and in the recov-
ery phase. Contrastingly, for the susceptible genotype, this 
change was subtle at six hours of chilling (1.36 fold) and 
declined after that (Table 4; Fig. 5).

In a study by Oh et al. it was observed that the expres-
sion of AP37 in rice at 4 °C up to 6 h, increased rapidly 
within 30 min upto 2 h, followed by an instant decrease 
[21]. In another study conducted on expression analysis of 
cold-induced transcription factor genes in 14 days old rice 
seedlings under cold stress (5 °C) for 24 h, the expression 
of OsAP37 gene was upregulated in the resistant genotype 
(8-folds) but remained unaltered in the susceptible genotype 
[74], which is consistent with our results.

OSMYB‑4

The OsMyb4 gene from rice is a member of myeloblastosis 
protein family (MYB) of TFs, which has been introgressed 
into several plant species and its role in abiotic/biotic stress 
responses evaluated [77–80]. In the present study, transcrip-
tion factor OsMYB4 showed early induction at 2 h reach-
ing maximum expression at 24 h in the resistant genotype 
(GS-74) and after that, there was a sharp decrease in its 
expression. In contrast, in the susceptible genotype (SR-4) 
there was no expression under cold stress (Table 4, Fig. 5). 
In a study by Vannini et al. [81] on overexpression of rice 
OsMYB-4 gene at 4 °C, OsMYB-4 was induced in 3-day 
rice coleoptiles after 4 h of (4 °C) cold treatment. In another 
study by Vannini et  al. on transgenic plants of tomato 
ectopically expressing the rice OsMYB4 gene at 4 °C, the 
OsMYB4 expression was elevated after 8 h of cold stress 
[77]. In a study by Soltesz et al. on rice, OsMYB4 gene 
enhanced germination in transgenic 10-day-old barley plants 
under cold stress (at 4 °C), and was upregulated after cold 
treatment [79]. In another study conducted by Baldoni et al. 
on the OsMYB4 gene family in rice seedlings placed at 4 °C 
in the light for 24 h, OsMYB-4 gene expression was upregu-
lated at 4 h, reaching a maximum at 24 h [82]. In a study 
conducted by de Freitas et al. in rice under low temperature 
(10 °C) for a period of 72 h, OsMYB4 was induced with 
time in all the genotypes with maximum at 3 h in one geno-
type while at 48 h in some other genotypes [83].

Fig. 5   Relative gene expression of transcription factors in response to 
cold stress treatment: a OsMYB; b AP37; c DREB1A; d DREB1B; 
e DREB1D. Leaves were collected at 0, 2, 6, 24 and P24 h. α-actin 
was used as internal standard. Values are means ± standard errors of 
three biological repeats; f Association network of transcription fac-

tors DREB1A (ERF24), DREB1B, DREB1D, OSMYB4 (LTR1) and 
AP37 in STRING. The thickness of the line indicates the degree of 
confidence prediction of the interaction. Network nodes represent 
proteins and edges represent protein–protein associations
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In conclusion, the disparities in expression profiles 
between studies could be due to differences in cold stress 
temperature (which ranged between 4–14 °C), duration 
(ranging from 15 min to several days), and time points at 
which samples were collected for analysis. The transcrip-
tion factors under study have a significant role in regulat-
ing developmental and stress responses. DREB1 (A, B, D) 
transcription activators bind specifically to the C-repeat/
DRE element DNA sequence 5′-[AG]CCGAC-3′ mediat-
ing high-salinity and dehydration-inducible transcription. 
Anther-specific aspartic protease (AP37), though involved 
in tapetal programmed cell death (PCD) showed interaction 
with MYB4, playing an indirect role in modulating cold tol-
erance (Fig. 5f). MYB4 is involved in cold stress response 
and positively regulates the expression of genes involved in 
scavenging reactive oxygen species (ROS). It transactivates 
a complex gene network affecting stress tolerance and pani-
cle development [84].

Overall, the transcription factors DREB1A (ERF24), 
DREB1B, DREB1D, OSMYB4 (LTR1) and AP37 played 
a significant role based on Tukey’s multiple comparisons 
test (Table 5S) which correlates with the typical association 
network of these transcription factors in STRING (as shown 
in Fig. 5f).

Phenotypic characteristics

Cold damage at the vegetative stage is significantly lower 
than at the reproductive stage, because the former has a 
lower threshold temperature (10–13 °C) while the latter has 
a higher threshold temperature for cold damage (18–20 °C) 
[85]. The present study showed that cold damage at the seed-
ling stage caused a non-significant decrease in phenotypic 
characteristics like shoot height and shoot biomass in both 
cold tolerant and susceptible genotypes (Table 5, Fig. 6). 
However, there was a significant decrease in the number of 
tillers and root biomass due to cold stress at the S3 seedling 
stage, which ultimately affected the grain yield adversely. 
The decrease in grain yield of resistant genotype GS74 was 
9.13%, which is statistically insignificant, while in suscep-
tible type, it was 15.73% (statistically significant) (Fig. 6).

We conclude that rice seedlings exposed to cold stress 
induce the synthesis and accumulation of cryo-protect-
ants and osmoprotectants like proline and sugars, thereby 
enhancing plant’s cold tolerance through modulation of gene 
expression, osmotic adjustments, and ROS scavenging.

Broad outline of cold tolerance in rice

Plants perception and adaptation to adverse climatic condi-
tions in influenced by stress hormones like abscisic acids, 
ethylene, salicylic acid, jasmonic acid, gibberellins, brassi-
nosteroids, and cytokinins are induced under abiotic stress Ta

bl
e 

5  
E

ffe
ct

 o
f c

ol
d 

str
es

s o
n 

di
ffe

re
nt

 p
hy

si
ol

og
ic

al
 a

nd
 a

gr
on

om
ic

 tr
ai

ts

A
ste

ris
ks

 in
di

ca
te

 le
ve

l o
f s

ta
tis

tic
al

 si
gn

ifi
ca

nc
e:

 *
p 

≤
 0

.0
5,

 *
*p

 ≤
 0

.0
1,

 *
**

p 
≤

 0
.0

01
, *

**
*p

 ≤
 0

.0
00

1

C
on

di
tio

n
G

en
ot

yp
es

G
ra

in
 y

ie
ld

 (g
/p

la
nt

)
Sh

oo
t h

ei
gh

t (
cm

)
Sh

oo
t b

io
m

as
s (

g/
pl

an
t)

Ro
ot

 b
io

m
as

s (
g/

pl
an

t)
N

um
be

r o
f t

ill
er

s

Su
sc

ep
tib

le
Re

si
st

an
t

Su
sc

ep
tib

le
Re

si
st

an
t

Su
sc

ep
tib

le
Re

si
st

an
t

Su
sc

ep
tib

le
Re

si
st

an
t

Su
sc

ep
tib

le
Re

si
st

an
t

C
on

tro
l

31
.3

9
15

.8
7

10
9.

22
12

7.
00

24
.5

6
21

.1
6

15
.7

0
19

.3
1

25
.0

0
19

.3
3

Tr
ea

te
d

26
.4

5
14

.4
2

10
0.

75
12

4.
46

17
.6

8
18

.5
4

8.
43

14
.4

7
18

.0
0

16
.0

0
M

ea
n

28
.9

2
15

.1
4

10
4.

98
12

5.
73

21
.1

2
19

.8
5

12
.0

6
16

.8
9

21
.5

0
17

.6
7

Pe
rc

en
t r

ed
uc

tio
n

15
.7

3%
9.

09
%

7.
75

%
2.

00
%

28
.0

0%
12

.3
7%

46
.3

2%
25

.0
6%

28
.0

0%
17

.2
4%

St
at

ist
ic

al
 si

gn
ifi

ca
nc

e
C

on
di

tio
n:

 N
S

C
on

di
tio

n:
 N

S
C

on
di

tio
n:

 N
S

C
on

di
tio

n:
 *

*
C

on
di

tio
n:

 *
G

en
ot

yp
e:

 *
**

G
en

ot
yp

e:
 N

S
G

en
ot

yp
e:

 N
S

G
en

ot
yp

e:
 *

G
en

ot
yp

e:
 *

In
te

ra
ct

io
n:

 N
S

In
te

ra
ct

io
n:

 N
S

In
te

ra
ct

io
n:

 N
S

In
te

ra
ct

io
n:

 N
S

In
te

ra
ct

io
n:

 N
S



	 Molecular Biology Reports          (2025) 52:417   417   Page 12 of 16

Fig. 6   Effect of cold stress treatment on phenotypic characteristics: a grain yield per plant, b shoot height, c shoot biomass, d root biomass, e 
number of tillers. Cold stress was given for 24 h at Stage 3 and data was taken at yielding stage. Data represents the mean of ten replicates ± SE

Adapting plants to cold stress

Detoxification / ROS Scavenging

Antioxidant elevation/osmoregulation
(CAT,SOD, GR, APX, Proline, GB, Sugars)

Cold Tolerance

Restore cellular hemostasis

Signal perception

DREB1A, 1B, 1D Osmyb-4 AP37

ABA-dependent ABA-independent

MYC/MYB NAC/ZF-HD

Cold

AP2/EREBF

Protein synthesis and modification of 
preexisting proteins

Interact with cis-elements of various stress-related
genes to up-regulate the expression

AREB/ABF 
(bZIP)

ERF AP2RAV DREB/CBF

WRKY

Fig. 7   Broad outline of the role of different factors in cold tolerance of rice
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conditions to enable optimal responses [5, 86]. Among these, 
abscisic acid (ABA) is the central regulator of abiotic stress 
resistance and coordinates a range of functions [87]. Stress-
responsive genes are expressed either via ABA-dependent 
or ABA-independent pathways [84]. Several transcription 
factor families play an important role in stress signal trans-
duction, including APETALA2/ethylene-responsive factor 
(AP2/ERF), WRKY, NAC/ZF-HD, and MYC (myelocy-
tomatosis oncogene)/MYB (myeloblastosis oncogene) [88]. 
ABA-dependent signalling systems mediate stress adaptation 
by inducing regulons like (i) the AREB/ABF bZIP regulon; 
and (ii) the MYC/MYB regulon [89–91]. ABA-independent 
signalling systems mediate stress adaptation through (i) the 
CBF/DREB regulon (AP2/EREBP (ERF); and (ii) the NAC 
(NAM, ATAF and CUC) and ZF-HD (zinc-finger homeo-
domain) regulon [19, 91]. However, some studies show the 
existence of both ABA-dependent and independent path-
ways of stress response that function through AP2/EREBP 
(ERF) family [92, 93]. Rice ERF gene AP37, though not 
induced by ABA [21] interacts with OsMYB4, which regu-
lates expression of genes involved in ROS scavenging [94]. 
DREB1 induces the expression of genes involved in ROS 
detoxification, membrane transport, osmolyte biosynthesis, 
and phosphoinositide metabolism [95–100]. The osmopro-
tectants and antioxidants stabilize cellular membranes and 
restore cellular homeostasis. Expression of genes involved in 
cellular regulation leads to protein synthesis and modifica-
tion of preexisting proteins which help plants to repair the 
damaged protein machinery (Fig. 7).

Conclusions

Owing to climate change, rice-growing regions in the west-
ern Himalayas experience harsher, lower temperatures 
more frequently, especially during spring, coinciding with 
the early rice-growing season. Unlike most earlier studies 
worldwide, rice germplasm of the region was screened at 
a lower temperature of 5 °C at the S3 seedling stage. The 
screening results and molecular analyses suggested that the 
mechanisms triggered by cold stress in rice seedlings depend 
on the rice ecotype; and that most (more than 80%) of the 
indica types clustered into cold-sensitive class, while the 
japonica types were widely distributed across all cold-stress 
response categories.

Cold stress reduced the tiller number, root biomass and 
rice productivity, even when the rice plants were in the 
early vegetative stage (S3). Osmoprotectants and antioxi-
dants were induced to alleviate the oxidant stress caused by 
ROS generation in plants witnessing cold-stress. Differen-
tial expression of transcription factors OsMYB-4, OsAP-
37, OsDREB1A and OsDREB1B, presented a clear contrast 
between resistant and susceptible genotypes, implying that 

these transcription factors caused differential competence of 
redox-regulatory mechanism under cold stress in rice, and 
their expression was genotype-dependent. These transcrip-
tion factors (OsMYB-4, OsDREB1A and OsDREB1B) are 
good candidates for developing cold-stress-resistant geno-
types through genetic manipulation.
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